Foundations of Physics

, Volume 24, Issue 8, pp 1161–1177

Partial and unsharp quantum logics

  • M. L. Dalla Chiara
  • R. Giuntini
Part I. Invited Papers Dedicated to Constantin Piron

Abstract

The total and the sharp character of orthodox quantum logic has been put in question in different contexts. This paper presents the basic ideas for a unified approach to partial and unsharp forms of quantum logic. We prove a completeness theorem for some partial logics based on orthoalgebras and orthomodular posets. We introduce the notion of unsharp orthoalgebra and of generalized MV algebra. The class of all effects of any Hilbert space gives rise to particular examples of these structures. Finally, we investigate the relationship between unsharp orthoalgebras, generalized MV algebras, and orthomodular lattices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Birkhoff and J. von Neumann, “The logic of quantum mechanics,”Ann. Math. 37, 822–843 (1936).Google Scholar
  2. P. Busch, P. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991).Google Scholar
  3. G. Cattaneo and F. Laudisa, “Axiomatic unsharp quantum mechanics,”Found. Phys. 24, 631–681 (1994).Google Scholar
  4. C. C. Chang, “Algebraic analysis of many-valued logics,”Trans. Am. Math. Soc. 88, 467–490 (1957).Google Scholar
  5. C. C. Chang, “A new proof of the completeness of Łukasiewicz axioms,”Trans. Am. Math. Soc. 93, 74–80 (1958).Google Scholar
  6. J. Czelakowski, “Logics based on partial Booleanσ-algebras (I),”Stud. Logica 33, 371–396 (1974).Google Scholar
  7. M. L. Dalla Chiara, “Quantum logic,” in D. Gabbay and F. Guenthner, eds.,Handbook of Philosophical Logic, III (Reidel, Dordrecht, 1986).Google Scholar
  8. M. L. Dalla Chiara and R. Giuntini, “The logic of orthoalgebras,” preprint.Google Scholar
  9. E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1986).Google Scholar
  10. D. J. Foulis, “A note on orthomodular lattices,”Portugal. Math. 21, 65–72 (1962).Google Scholar
  11. D. J. Foulis, R. Greechie, and G. Rüttimann, “Filters and supports in orthoalgebras,”Int. J. Theor. Phys. 31, 789–807 (1992).Google Scholar
  12. D. J. Foulis and C. Randall, “Empirical logic and tensor products,” in H. Neumann, ed.,Interpretations and Foundations of Quantum Theory (Bibliographisches Institut, Mannheim, 1981).Google Scholar
  13. R. I. Goldblatt, “Semantic analysis of orthologic,”J. Philos. Logic 3, 19–35 (1974).Google Scholar
  14. R. Greechie, D. J. Foulis, M. L. Dalla Chiara, and R. Giuntini, “Quantum logic,” in G. Trigg, ed.,Encyclopedia of Applied Physics (VCH Publishers, to appear).Google Scholar
  15. G. Hardegree, “The conditional in abstract and concrete quantum logic,” in C. A. Hooker, ed.,The Logic-Algebraic Approach to Quantum Mechanics, II (Reidel, Dordrecht, 1979).Google Scholar
  16. G. Hardegree and P. Lock, “Connections among quantum logics, Part 1, Quantum propositional logics,”Int. J. Theor. Phys. 24, 43–53 (1984).Google Scholar
  17. S. Kochen and E. Specker, “The calculus of partial propositional functions,” in Y. Bar-Hillen, ed.,Logic, Methodology, and the Philosophy of Science (North-Holland, Amsterdam, 1965).Google Scholar
  18. K. Kraus,States, Effects, and Operations (Springer, Berlin, 1983).Google Scholar
  19. G. Ludwig,Foundations of Quantum Mechanics, I (Springer, Berlin, 1983).Google Scholar
  20. P. Mangani, “Su certe algebre connesse con logiche a più valori,”Boll. Unione Mat. Ital. 8, 68–78 (1973).Google Scholar
  21. C. Piron, “Axiomatique quantique,”Helv. Phys. Acta 37, 439–468 (1964).Google Scholar
  22. C. Piron,Foundations of Quantum Physics (Benjamin, Reading, Massachusetts, 1976).Google Scholar
  23. P. Pták and S. Pulmannová,Orthomodular Structures as Quantum Logics (Kluwer, Dordrecht, 1991).Google Scholar
  24. P. Suppes, “Probability concepts in quantum mechanics,”Philos. Sci. 28, 378–389 (1961).Google Scholar
  25. P. Suppes, “The role of probability in quantum mechanics,” in B. Baumrin, ed.,The Delaware Seminar, II (Wiley, New York, 1963).Google Scholar
  26. P. Suppes, “The probabilistic argument for a nonclassical logic of quantum mechanics,”Philos. Sci. 33, 14–21 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. L. Dalla Chiara
    • 1
  • R. Giuntini
    • 1
  1. 1.Dipartimento di FilosofiaUniversità di FirenzeFirenzeItaly

Personalised recommendations