Foundations of Physics

, Volume 25, Issue 10, pp 1461–1494 | Cite as

Derivation of inertial forces from the Einstein-de Broglie-Bohm (E.d.B.B.) causal stochastic interpretation of quantum mechanics

  • Jean-Pierre Vigier


The physical origin of inertial forces is shown to be a consequence of the local interaction of Dirac's real covariant ether model(1) with accelerated microobjects, considered as real extended particlelike solitons, piloted by surrounding subluminal real wave fields packets.(2) Their explicit form results from the application of local inertial Lorentz transformations to the particles submitted to noninertial velocitydependent accelerations, i.e., constitute a natural extension of Lorentz's interpretation of restricted relativity.(3) Indeed Dirac's real physical covariant ether model implies inertial forces if one considers the real accelerated noninertial motions of general relativity, defined within the absolute local inertial frames associated with the observed local isotropy of the 2.7° K background microwave radiation.(4) Inertia thus appears as a necessary consequence of the real particle motions described by the E.d.B.B. formalism of quantum mechanics.


Soliton Quantum Mechanic Microwave Radiation Isotropy Particle Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac,Nature (London) 168; 906 (1951).Google Scholar
  2. 2.
    For a review of this proposal, see J. P. Vigier,Found. Phys. 21, 125 (1991).Google Scholar
  3. 3.
    H. A. Lorentz,Versus einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern (Bri, Leiden, 1895).Google Scholar
  4. 4.
    M. C. Combourieu and J. P. Vigier,Phys. Lett. A 175, 269 (1993). For a review of the present state of the Lorentz interpretation of relativity theory, see “Analysis of absolute space-time Lorentz theories,” A. K. A. Maciel and J. Tiomno,Found Phys. 19, 505 (1989).Google Scholar
  5. 5.
    E. Mach,Science of Mechanics, 9th edn. (1983) (Open Court, London, 1933).Google Scholar
  6. 6.
    A. Einstein, “Uber den Ather,”Verh. Schweiz. Naturf. Ges., 85 (1905).Google Scholar
  7. 7.
    B. Haisch, A. Rueda, and H. E. Puthoff,Phys. Rev. A 49, 678 (1994).Google Scholar
  8. 8.
    A. S. Eddington,Report on the Theory of Gravitation, Phys. Soc. London (Fleetway Press, London, 1920). A. K. T. Assis, “On Mach's principle,”Found. Phys. Lett. L2, 301 (1989). D. W. Sciama, “On the origin if inertia,”Royal Astron. Soc. Month. Not. 113, 34 (1953). P. and N. Graneau,Newton versus Einstein (Carlton, New York, 1993). J. Larmor,Ether and Matter (Cambridge University Press, Cambridge, 1900).Google Scholar
  9. 9.
    W. Rindler, “The Lense-Thirring effect exposed as anti-Machian,”Phys. Lett. A 187, 236 (1994).Google Scholar
  10. 10.
    B. Mashoon,Nuovo Cimento Lett. 39, 337 (1984).Google Scholar
  11. 11.
    K. P. S. Sinha, E. C. G. Sudarshan, and J. P. Vigier,Phys. Lett. A 114, 298 (1986).Google Scholar
  12. 12.
    L. de Broglie,Une tentative d'interprétation causale et non-linéaire de la mécanique ondulatoire (Gauthier-Villars, Paris, 1956). D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  13. 13.
    The next pages on relativity and inertia up to relation (10) follow the exposition given by E. Tocaci,Relativistic Mechanics, Time and Inertia (Reidel, Dordrecht, 1984).Google Scholar
  14. 14.
    E. Whittaker,History of the Theories of Ether and Electricity (Thomas, London, 1953).Google Scholar
  15. 15.
    A. Einstein, “Electrodynamic bewegter Körper,”Ann. Phys. (Leipzig) 17, 891 (1905).Google Scholar
  16. 16.
    F. Rohrlich,Ann. Phys. 22, 169 (1969).Google Scholar
  17. 17.
    L. Mishra, private communication.Google Scholar
  18. 18.
    W. Rindler and L. Mishra, “The non-reciprocity of relative acceleration in relativity,”Phys. Lett. A (1994), in press.Google Scholar
  19. 19.
    L. Mishra, “The relativistic acceleration theorem,”Class. Quant. Grav. L97 (1994).Google Scholar
  20. 20.
    G. Builder, “Ether and relativity,”Austr. J. Phys. II, 279 (1958).Google Scholar
  21. 21.
    E. A. Desloge,Found. Phys. 19, 1191 (1989).Google Scholar
  22. 22.
    For a review of this question, see J. P. Vigier,IEEE Trans. Plasma Sci. 18, 64 (1990).Google Scholar
  23. 23.
    D. Bohm and J. P. Vigier,Phys. Rev. 109, 1882 (1958). H. Yukawa,Scientific Work (Iwanami Shoten, Tokyo, 1979).Google Scholar
  24. 24.
    J. M. Souriau, F. Halbwachs, and J. P. Vigier,J. Phys. Rad. 22, 26 (1961). F. Halbwachs,Théories relativistes fluides à spin (Gauthier-Villars, Paris, 1960).Google Scholar
  25. 25.
    L. de Broglie,Thèse (Paris, 1924). See also “Lathermodynamique de la particule isolée (Gauthier-Villars, Paris, 1960).Google Scholar
  26. 26.
    N. Cufaro-Petroniet al., Phys. Rev. D. 32, 1375 (1985).Google Scholar
  27. 27.
    A. Kyprianidis and D. Sardelis,Nuovo Cimento Lett. 39, 337 (1984).Google Scholar
  28. 28.
    D. Bohm and J. P. Vigier,Phys. Rev. II 96, 208 (1954).Google Scholar
  29. 29.
    P. Garbaczewski and J. P. Vigier,Phys. Rev. A 46, 4634 (1992).Google Scholar
  30. 30.
    N. Cufaro-Petroni and J. P. Vigier,Found. Phys. 22, 1 (1992).Google Scholar
  31. 31.
    J. P. Vigier,Pramana J. Phys. 25, 397 (1985). L. de Broglie and J. P. Vigier,La physique quantique restera-t-elle indéterministe? (Gauthier-Villars, Paris, 1953). J. P. Vigier,Found. Phys. 21, 125 (1991).Google Scholar
  32. 32.
    J. P. Vigier,Found. Phys. 24, 61 (1994). J. S. Bell, private communication.Google Scholar
  33. 33.
    Ch. Fenech and J. P. Vigier,Phys. Lett. A 37 (1993).Google Scholar
  34. 34.
    J. P. Vigier,Astr. Nach. 303, 61 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Jean-Pierre Vigier
    • 1
  1. 1.Gravitation et Cosmologie RelativistesUniversité Paris VI, CNRS-URA 769ParisFrance

Personalised recommendations