Foundations of Physics

, Volume 24, Issue 5, pp 685–714 | Cite as

Nondemolition principle of quantum measurement theory

  • V. P. Belavkin


We give an explicit axiomatic formulation of the quantum measurement theory which is free of the projection postulate. It is based on the generalized nondemolition principle applicable also to the unsharp, continuous-spectrum and continuous-in-time observations. The “collapsed state-vector” after the “objectification” is simply treated as a random vector of the a posterioristate given by the quantum filtering, i.e., the conditioning of the a prioriinduced state on the corresponding reduced algebra. The nonlinear phenomenological equation of “continuous spontaneous localization” has been derived from the Schrödinger equation as a case of the quantum filtering equation for the diffusive nondemolition measurement. The quantum theory of measurement and filtering suggests also another type of the stochastic equation for the dynamical theory of continuous reduction, corresponding to the counting nondemolition measurement, which is more relevant for the quantum experiments.


Quantum Theory Random Vector Dynamical Theory Measurement Theory Quantum Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ludwig,Math. Phys. 4, 331 (1967);9, 1 (1968).zbMATHADSMathSciNetGoogle Scholar
  2. 2.
    E. B. Davies and J. Lewis,Commun. Math. Phys. 17, 239–260 (1970).zbMATHADSMathSciNetGoogle Scholar
  3. 3.
    L. E. Ballentine,Rev. Mod. Phys. 42, 358–381 (1970).zbMATHADSGoogle Scholar
  4. 4.
    A. Shimony,Phys. Rev. D 9, 2321–2323 (1974).ADSGoogle Scholar
  5. 5.
    V. P. Belavkin, “Optimal linear random filtration of quantum boson signals,”Probl. Control Inform. Theory 3, 47–62 (1974).zbMATHMathSciNetGoogle Scholar
  6. 6.
    V. P. Belavkin, “Optimal quantum filtration of Markovian signals,”Probl. Control Inform. Theory 7(5), 345–360 (1978).MathSciNetGoogle Scholar
  7. 7.
    V. P. Belavkin, Optimal filtering of Markov signals with quantum noise,Radio Eng. Electron. Phys. 25, 1445–1453 (1980).MathSciNetGoogle Scholar
  8. 8.
    A. Barchielli, L. Lanz, and G. M. Prosperi,Nuovo Cimento B 72, 79 (1982).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    V. P. Belavkin, “Theory of control of observable quantum systems,”Autom. Remote Control 44(2), 178–188 (1983).zbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Peres,Am. J. Phys. 52, 644 (1984).ADSGoogle Scholar
  11. 11.
    R. L. Stratonovich,Conditional Markov Processes and Their Applications to Optimal Control, Moscow University Press, Moscow (1966).Google Scholar
  12. 12.
    R. E. Kalman and R. S. Bucy, “New results in linear filtering theory and prediction problems,”J. Basic Eng. Trans. ASME 83, 95–108 (1961).MathSciNetGoogle Scholar
  13. 13.
    V. P. Belavkin, “Nondemolition measurement and control in quantum dynamical systems,” in A. Blaquiere, ed.,Proceedings, CISM seminar on Inform. Compl. and Control in Quantum Physics, Udine 1985 (Springer, Wien, 1987), pp. 311–339.Google Scholar
  14. 14.
    V. P. Belavkin, “Nondemolition measurements, nonlinear filtering, and dynamical programming of quantum stochastic processes,” in A. Blaquiere, ed.,Proceedings, Bellmann Continuum Workshop “Modelling and Control of Systems,”Sophia-Antipolis 1988 (Lecture Notes on Control and Information Science 121) (Springer, Berlin, 1988).Google Scholar
  15. 15.
    L. E. Ballentine,Int. J. Theor. Phys. 27, 211–218 (1987).Google Scholar
  16. 16.
    P. Pearle,Phys. Rev. D 29, 235 (1984).ADSMathSciNetGoogle Scholar
  17. 17.
    N. Gisen,J. Phys. A: Math. Gen. 19, 205–210 (1986).ADSGoogle Scholar
  18. 18.
    L. Diosi,Phys. Rev. A 40, 1165–1174 (1988).ADSGoogle Scholar
  19. 19.
    G. C. Ghirardi, A. Rimini, and T. Weber,Phys. Rev. D 34(2), 470–491 (1986).ADSMathSciNetGoogle Scholar
  20. 20.
    G. C. Ghirardi, P. Pearle, and A. Rimini,Phys. Rev. A 42, 478–489 (1990).ADSMathSciNetGoogle Scholar
  21. 21.
    V. P. Belavkin, “A new wave equation for a continuous nondemolition measurement,”Phys. Lett. A 140, 355–358 (1989).ADSMathSciNetGoogle Scholar
  22. 22.
    V. P. Belavkin and P. Staszewski, “A quantum particle undergoing continuous observation,”Phys. Lett. A 140, 359–362 (1989).ADSMathSciNetGoogle Scholar
  23. 23.
    V. P. Belavkin, “A posterior Schrödinger equation for continuous nondemolition measurement,”J. Math. Phys. 31(12), 2930–2934 (1990).zbMATHADSMathSciNetGoogle Scholar
  24. 24.
    V. P. Belavkin and P. Staszewski, “Nondemolition observation of a free quantum particle,”Phys. Rev. A 45(3), 1347–1356 (1992).ADSGoogle Scholar
  25. 25.
    V. P. Belavkin, “Quantum continual measurements anda posteriori collapse on CCR,”Commun. Math. Phys. 146, 611–635 (1992).zbMATHADSMathSciNetGoogle Scholar
  26. 26.
    V. P. Belavkin, A continuous counting observation and posterior quantum dynamics,J. Phys. A: Math. Gen. 22, L1109–1114 (1989).ADSMathSciNetGoogle Scholar
  27. 27.
    V. P. Belavkin, “A stochastic posterior Schrödinger equation for counting nondemolition measurement,”Lett. Math. Phys. 20, 85–89 (1990).zbMATHADSMathSciNetGoogle Scholar
  28. 28.
    V. P. Belavkin and P. Staszewski,Rep. Math. Phys. 29, 213–225 (1991).zbMATHADSMathSciNetGoogle Scholar
  29. 29.
    V. P. Belavkin, “Stochastic posterior equations for quantum nonlinear filtering,”Probabilitv Theory and Mathematical Statistics, B. Grigelionis, ed., (VSP/Mokslas, Vilnius, 1990), Vol. 1, pp. 91–109.Google Scholar
  30. 30.
    A. Barchielli and V. P. Belavkin, “Measurements continuous in time anda posteriori states in quantum mechanics,”J. Phys. A: Math. Gen. 24, 1495–1514 (1991).ADSMathSciNetGoogle Scholar
  31. 31.
    V. P. Belavkin, “Quantum stochastic calculus and quantum nonlinear filtering,”J. Multivar. Anal. 42(2), 171–201 (1992).zbMATHADSMathSciNetGoogle Scholar
  32. 32.
    V. B. Braginski, Y. I. Vorontzov, and F. J. Halili,Sov. Phys.-JETP 46(2), 765;46(4), 171–201 (1977).Google Scholar
  33. 33.
    K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg,Phys. Rev. Lett. 40, 667 (1978).ADSGoogle Scholar
  34. 34.
    A. S. Holevo, “Quantum estimation,”Adv. Stat. Signal Process. 1, 157–202 (1987).Google Scholar
  35. 35.
    V. P. Belavkin, “Reconstruction theorem for quantum stochastic processes,”Theor. Math. Phys. 3, 409–431 (1985).Google Scholar
  36. 36.
    K. Kraus,States, Effects, and Operations (Springer, Berlin, 1983).zbMATHGoogle Scholar
  37. 37.
    E. B. Ozawa,J. Math. Phys. 25, 79–87 (1984).ADSMathSciNetGoogle Scholar
  38. 38.
    A. Barchielli and G. Lupieri,J. Math. Phys. 26, 2222–2230 (1985).zbMATHADSMathSciNetGoogle Scholar
  39. 39.
    L. Accardi, R. Alicki, A. Frigerio, and Y. G. Lu, “An invitation to weak coupling and low density limits,”Quantum Probability and Related Topics VI, L. Accardi, ed. (World Scientific, Singapore, 1991).Google Scholar
  40. 40.
    P. Busch, P. J. Lahti, and P. Mittelstaedt,The Quantum Theory of Measurement (Springer, Berlin, 1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. P. Belavkin
    • 1
    • 2
  1. 1.Fachbereich PhysikPhilipps UniversitätMarburgGermany
  2. 2.Mathematics DepartmentUniversity of NottinghamUK

Personalised recommendations