Foundations of Physics

, Volume 24, Issue 5, pp 593–630 | Cite as

The Schrödinger equation in quantum field theory

  • Jamal Nazrul Islam


Some aspects of the Schrödinger equation in quantum field theory are considered in this article. The emphasis is on the Schrödinger functional equation for Yang-Mills theory, arising mainly out of Feynman's work on (2+1)-dimensional Yang-Mills theory, which he studied with a view to explaining the confinement of gluons. The author extended Feynman's work in two earlier papers, and the present article is partly a review of Feynman's and the author's work and some further extension of the latter. The primary motivation of this article is to suggest that considering the Schrödinger functional equation in the context of Yang-Mills theory may contribute significantly to the solution of the confinement and related problems, an aspect which, in the author's opinion, has not received the attention it deserves. The relation of this problem with certain others such as those of quarks, superconductivity, and quantum gravity is considered briefly, together with certain basic aspects of the formalism that may be of interest in their own right, especially for the beginner.


Field Theory Quantum Field Theory Functional Equation Present Article Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Jauch and F. Rohrlich,The Theory of Photons and Electrons (Addison-Wesley, Massachusetts, 1955).Google Scholar
  2. 2.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Clarendon, Oxford, 1958), 4th edn.zbMATHGoogle Scholar
  3. 3.
    S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row & Peterson, New York, 1961).Google Scholar
  4. 4.
    S. Tomonaga,Prog. Theor. Phys. 1 (2), 1 (1946); H. A. Bethe and E. E. Salpeter,Hanbdbuch der Physik, Vol. XXXV/1 (Springer, Berlin, 1957); N. N. Bogoliubov and D. V. Shirkov,Introduction to the Theory of Quantized Fields (Interscience, New York, 1959), Chap. VI; C. Itzykson and J.-B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980), Chap. 10; V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,Quantum Electrodynamics (Pergamon, Oxford, 1982), p. 552.MathSciNetGoogle Scholar
  5. 5.
    R. P. Feynman,Nucl. Phys. B 188, 479 (1981).ADSMathSciNetGoogle Scholar
  6. 6.
    J. N. Islam,Proc. R. Soc. London A 421, 279 (1989);Prog. Theor. Phys. 89, 161 (1993).CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. 7.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965), p. 246.zbMATHGoogle Scholar
  8. 8.
    J. B. Hartle,Phys. Rev. D 29, 2730 (1984).ADSMathSciNetGoogle Scholar
  9. 9.
    R. P. Feynman,Acta Phys. Pol. 24, 697 (1963).MathSciNetGoogle Scholar
  10. 10.
    L. D. Faddeev and V. N. Popov,Phys. Lett. B 25, 29 (1967); E. S. Fradkin and I. V. Tyutin,Phys. Lett. B 30, 562 (1969);Phys. Rev. D 2, 2841 (1970); G. Leibbrandt,Rev. Mod. Phys. 59, 1067 (1987).ADSGoogle Scholar
  11. 11.
    R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948).ADSMathSciNetGoogle Scholar
  12. 12.
    F. J. Dyson,Phys. Rev. 85, 631 (1953).ADSMathSciNetGoogle Scholar
  13. 13.
    J. M. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957); A. L. Fetter and J. D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971); H. Haken,Quantum Field Theory of Solids (North-Holland, Amsterdam, 1973).zbMATHADSMathSciNetGoogle Scholar
  14. 14.
    D. J. E. Callaway,Phys. Rep. 167, 241 (1988); J. Soto,Nucl. Phys. B 316, 141 (1989).ADSGoogle Scholar
  15. 15.
    G. Bednorz and K. A. Müller,Z. Phys. B 64, 189 (1986); S. Chakravorty, A. Sudbo, P. W. Anderson, and S. Strong,Science 261, 337 (1993); H. Fukuyama,Physica C 185, 9 (1991); W. E. Pickettet al., Science 255, 46 (1991).ADSGoogle Scholar
  16. 16.
    J. B. Hartle and S. W. Hawking,Phys. Rev. D 28, 2960 (1983).ADSMathSciNetGoogle Scholar
  17. 17.
    B. S. De Witt,Phys. Rev. 160, 1113 (1967); J. A. Wheeler, inBattelle Rencontres, C. De Witt and J. A. Wheeler, eds. (Benjamin, New York, 1968); J. N. Islam,Introduction to Mathematical Cosmology (Cambridge University Press, Cambridge, 1992), Chap. 9.ADSGoogle Scholar
  18. 18.
    M. Weinstein,Phys. Rev. D 47, 5499 (1993).ADSMathSciNetGoogle Scholar
  19. 19.
    K. Symanzik,Nucl. Phys. B 190, 1 (1981); L. D. Faddeev,Les Houches, Session XXVIII 1975, R. Balian and J. Zinn-Justin, eds. (North-Holland, Amsterdam). L. D. Faddeev and A. A. Slavnov,Gauge Fields: Introduction to Quantum Theory (Bejamin Cumings, Reading, Massachusetts, 1980); B. E. Baaquie, “Wave Functional and Hamiltonian for Lattice Gauge Theory,” inProceedings, International Conference on Mathematical Physics, J. N. Islam, ed. (University of Chittagong, 1987).ADSMathSciNetGoogle Scholar
  20. 20.
    F. Rohrlich,Classical Charged Particles: Foundations of Their Theory (Addison-Wesley, Massachusetts, 1965);From Paradox to Reality: Our New Concepts of the Physical World (Cambridge University Press, Cambridge, 1987).zbMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jamal Nazrul Islam
    • 1
  1. 1.Research Centre for Mathematical and Physical SciencesUniversity of ChittagongBangladesh

Personalised recommendations