Mathematische Annalen

, Volume 176, Issue 1, pp 77–86 | Cite as

Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients

  • Hikosaburo Komatsu


Differential Equation Constant Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bengel, G.: Sur une extension de la théorie des hyperfonctions. C. R. Acad. Sci. Paris262, 499–501 (1966). Régularité des solutions hyperfonctions d'une équation elliptique. C. R. Acad. Sci. Paris262, 569–570 (1966).Google Scholar
  2. 2.
    Ehrenpreis, L.: A fundamental principle for systems of linear differential equations with constant coefficients and some of its applications. Proc. Intern. Symp. on Linear Spaces, 161–174, Jerusalem, 1961.Google Scholar
  3. 3.
    Grauert, H.: On Levi's problem and the imbedding of real analytic manifolds. Ann. Math.68, 460–472 (1958).Google Scholar
  4. 4.
    Harvey, R.: Hyperfunctions and partial differential equations. Proc. Natl. Acad. Sci. U.S.55, 1042–1046 (1966).Google Scholar
  5. 5.
    -- Hyperfunctions and partial differential equations. Thesis, Stanford Univ. 1966.Google Scholar
  6. 6.
    Hörmander, L.: Differentiability properties of solutions of systems of differential equations. Arkiv Mat.3, 527–535 (1958).Google Scholar
  7. 7.
    —— An introduction to complex analysis in several variables. Princeton: Van Nostrand 1966.Google Scholar
  8. 8.
    Komatsu, H.: A characterization of real analytic functions. Proc. Japan Acad.36, 90–93 (1960).Google Scholar
  9. 9.
    Lech, C.: A metric result about the zeros of a complex polynomial ideal. Arkiv Mat.3, 543–554 (1958).Google Scholar
  10. 10.
    Malgrange, B.: Faisceaux sur des variétés analytiques réelles. Bull. Soc. Math. France83, 231–237 (1957).Google Scholar
  11. 11.
    Martineau, A.: Les hyperfonctions de M. Sato. Sém. Bourbaki13, No. 214 (1960/61).Google Scholar
  12. 12.
    Sato, M.: Theory of hyperfunctions II. J. Fac. Sci. Univ. Tokyo8, 387–437 (1960).Google Scholar
  13. 13.
    Serre, J.-P.: Un théorème de dualité. Comment Math. Helv.29, 9–26 (1955).Google Scholar
  14. 14.
    —— Algèbre locale, multiplicités. Lecture Notes Math.11. Berlin-Heidelberg-New York: Springer 1965.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Hikosaburo Komatsu
    • 1
  1. 1.Department of MathematicsUniversity of TokyoHongo, TokyoJapan

Personalised recommendations