Advertisement

Mathematische Annalen

, Volume 192, Issue 1, pp 71–82 | Cite as

Transfinite bases of subspaces in Hausdorff linear topological spaces

  • L. Dorembus
Article

Keywords

Topological Space Linear Topological Space Hausdorff Linear Topological Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, D., Lindenstrauss, J.: The structure of weakly compact sets in Banach space. Ann. of Math.88, 35–36 (1968).Google Scholar
  2. 2.
    Arsove, M. G., Edwards, R. E.: Generalized bases in topological linear spaces. Studia Math.19, 95–113 (1960).Google Scholar
  3. 3.
    Banach, S.: Théorie des operations linéaires. Warszawa 1932.Google Scholar
  4. 4.
    Bennet, G., Cooper, J. B.: Weak bases in (F)- and (LF)-spaces. J. London Math. Soc.44, 505–508 (1969).Google Scholar
  5. 5.
    Bessaga, C.: Topological equivalence of non-separable reflexive Banach spaces. Ordinal resolutions of identity and monotone bases. Bull. Ac. Pol. Sci., Serie Math. etc.15, 397–399 (1967).Google Scholar
  6. 6.
    ——, Pełczyński, A.: Własności baz w przestrzeni B0. Roczniki Pol. Tow. Mat. (I)3, 123–142 (1959).Google Scholar
  7. 7.
    Day, M. M.: Normed linear spaces. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  8. 8.
    Dean, D. W.: Schauder decompositions in (m). PAMS18, 619–623 (1967).Google Scholar
  9. 9.
    Dunford, N., Schwartz, J. T.: Linear operators. Part I. New York: Interscience Publ. 1967.Google Scholar
  10. 10.
    McArthur, C. W.: Generalized Schauder bases. Unpublished.Google Scholar
  11. 11.
    -- The projective equicontinuous topology. To appear.Google Scholar
  12. 12.
    —— The weak basis theorem. Coll. Math.17, 71–76 (1967).Google Scholar
  13. 13.
    ——, Retherford, J. R.: Some remarks on bases in linear topological spaces. Math. Ann.164, 38–41 (1966).Google Scholar
  14. 14.
    Robertson, A. P., Robertson, W. J.: Topological vector spaces. Cambridge: University Press 1966.Google Scholar
  15. 15.
    Russo, J. P.: Monotone and e-Schauder bases of subspaces. Canad. J. Math.20, 233–241 (1968).Google Scholar
  16. 16.
    Sanders, B. L.: On the existence of [Schauder] decompositions in Banach spaces. PAMS16, 987–990 (1965).Google Scholar
  17. 17.
    Singer, I.: On the basis problem in topological linear spaces. Rev. Math. Pur. Appl.10, 453–457 (1965).Google Scholar
  18. 18.
    Wilansky, A.: Functional analysis. New York: Blaisdell 1964.Google Scholar
  19. 19.
    Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators in\(\mathfrak{L}_p \) spaces and their applications. St. Math.29, 275–326 (1968).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • L. Dorembus
    • 1
  1. 1.Department of MathematicsTel Aviv UniversityTel AvivIsrael

Personalised recommendations