Hyperfine Interactions

, Volume 40, Issue 1–4, pp 147–157 | Cite as

Protein structural dynamics as determined by Mössbauer spectroscopy

  • Fritz Parak
  • Joachim Heidemeier
  • Gerd U. Nienhaus
Invited Papers, Concluding Remarks


Mössbauer spectroscopy on57Fe allows the study of dynamics with a characteristic time faster 100 ns. For myoglobin a detailed physical picture of protein dynamics has been obtained. A myoglobin molecule has no well defined energy minimum. X-ray structure analysis yields only an average conformation. At low temperatures the molecules are trapped in slightly different structures called conformational substates. At higher temperatures a Brownian type of oscillation of molecular segments in restricted space occurs. RSMR technique allows an estimation of the characteristic size of these segments which are in myoglobin well below 30 A and larger than 6 A. A determination of the quasielastic absorption with high accuracy yields the energy distribution of the conformational substates. As further examples bacteriorhodopsin and a model compound for membranes are discussed.


Thin Film Structure Analysis Energy Minimum Energy Distribution Characteristic Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Gonser U. and Grant R.W. (1965), Biophys. J.5, 823–844Google Scholar
  2. /2/.
    Parak F. and Formanek H. (1971), Acta Cryst.,27A, 573–578Google Scholar
  3. /3/.
    Mössbauer R.L. (1985) in: Applications of the Mössbauer Effect, ed. Yu.M. Kagan and I.S. Lyubutin, Vol. 1, Gordon and BreachGoogle Scholar
  4. /4/.
    Mössbauer R.L. (1987), Hyperfine Interactions33, 199–222Google Scholar
  5. /5/.
    Dwivedi A., Pederson T. and Debrunner P.G. (1979), J. de PhysiqueC2, 531–533Google Scholar
  6. /6/.
    Parak F. (1980), J. de Physique41, Coll. Cl, 71–78Google Scholar
  7. /7/.
    Krupyanskii Yu.F., Parak F., Gaubmann E.E., Wagner F.M., Goldanskii V.I., Mössbauer R.L.; Suzdalev I.P., Litterst F.J. and Vogel H. (1980), J. de Physique41, Coll. Cl, 489–490Google Scholar
  8. /8/.
    Bauminger E.R., Cohen S.G., Novik I., Ofer S and Yariv J. (1982), in: Int. Conf. on the Appl. of the Mössbauer Effect, ed. V.G. Bhide, Indian National Science Academy, New Delhi, pages 640–644Google Scholar
  9. /9/.
    Goldanskii V.I. (1985) in: Applications of the Mössbauer Effect, ed. Yu.M. Kagan and I.S. Lyubutin, Vol. 1, Gordon and BreachGoogle Scholar
  10. /10/.
    Parak F. (1985) in: Applications of the Mössbauer Effect, ed. Yu.M. Kagan and I.S. Lyubutin, Vol. 1, Gordon and BreachGoogle Scholar
  11. /11/.
    Albanese G., Deriu A., Cavatorta F., Krupyanskii Yu.F., Suzdalev I.P. and Goldanskii V.I. (1986), Hyperfine Interactions29, 1407–1409Google Scholar
  12. /12/.
    Nienhaus G.U. and Parak F. (1986), Hyperfine Interactions29, 1451–1454Google Scholar
  13. /13/.
    Bauminger E.R., May L., Nowik I. and Heitner-Wirguin C. (1986), Hyperfine Interactions29, 1335–1338Google Scholar
  14. /14/.
    Parak F., Knapp E.W. and Kucheida D. (1982), J. Mol. Biol.161, 177–194Google Scholar
  15. /15/.
    Bauminger E.R., Cohen S.G., Nowik, I., Ofer S. and Yariv J. (1983), Proc. Natl. Acad. Sci. USA80, 736–740Google Scholar
  16. /16/.
    Knapp E.W., Fischer S.F. and Parak F. (1983), J. Chem. Phys.78, 4071–4711Google Scholar
  17. /17/.
    Nowik I., Cohen S.G., Bauminger E.R. and Ofer S. (1983), Phys. Rev. Lett.50, 1528–1531Google Scholar
  18. /18/.
    Nadler W. and Schulten K. (1983), Phys. Rev. Lett.51, 1712–1715Google Scholar
  19. /19/.
    Nadler W. and Schulten K. (1984), Proc. Natl. Acad. Sci. USA81, 5719–5723Google Scholar
  20. /20/.
    Parak F., Hartmann H., Aumann K.D., Reuscher H., Rennekamp G., Bartunik H. and Steigemann W. (1987), Eur. Biophys. J., in pressGoogle Scholar
  21. /21/.
    Knapp E.W., Fischer S.F. and Parak F. (1982), J. Phys. Chem.86, 5042–5047Google Scholar
  22. /22/.
    Parak F., Hartmann H., Nienhaus G.U. and Heidemeier J. (1987), in: Structure, Dynamics and Function of Biomolecules, ed.: A. Ehrenberg, R. Rigler, A. Gräslund, and L. Nilsson, Springer Verlag, pages 30–33Google Scholar
  23. /23/.
    Austin R. H., Beeson K.W., Eisenstein L., Frauenfelder H. and Gunsalus I.C. (1975), Biochem.14, 5355–5373Google Scholar
  24. /24/.
    Frauenfelder H., Petsko G.A. and Tsernoglou D. (1979), Nature (London)280, 558–563Google Scholar
  25. /25/.
    Hartmann H., Parak F., Steigemann W., Petsko G.A., Ponzi D.R. & Frauenfelder H. (1982), Proc. Natl. Acad. Sci., USA79, 4967–4971Google Scholar
  26. /26/.
    Ansari A., Berendzen J., Bowne S.F., Frauenfelder H., Iben I.E.T., Sauke T.B., Shyamsunder E., Young R.D. (1985), Proc. Natl. Acad. Sci. USA82, 5000–5004Google Scholar
  27. /27/.
    Parak F. and Knapp E.W. (1984), Proc. Natl. Acad. Sci. USA81, 7088–7092Google Scholar
  28. /28/.
    Parak F., Fischer M., Graffweg E. and Formanek H. (1987), in: Structure and Dynamics of Nucleic Acids, Proteins and Membranes, ed.: E. Clementi and S. Chin, Plenum Publish. Comp. New York, 139–148Google Scholar
  29. /29/.
    Krupjanskii Yu., Parak F., Goldanskii V.I., Mössbauer R.L., Gaubmann E.E., Engelmann H. and Suzdalev I.P. (1982), Z. Naturforschg.37 c, 57–62Google Scholar
  30. /30/.
    Parak F., Frolov E.N., Kononenko A.A., Mössbauer R.L., Goldanskii V.I. and Rubin A.B. (1980), FEBS lett.117, 368–372Google Scholar
  31. /31/.
    Heidemeier J., Fischer M., Parak F., Engelhard M., Hess B., Formanek H., in preparationGoogle Scholar
  32. /32/.
    Reinisch L., Heidemeier J. and Parak F. (1985), Eur. Biophys. J.12, 167–172Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1988

Authors and Affiliations

  • Fritz Parak
    • 1
  • Joachim Heidemeier
    • 1
  • Gerd U. Nienhaus
    • 1
  1. 1.Institut für Physikalische Chemie der UniversitätMünsterFed. Rep. of Germany

Personalised recommendations