Evaluation of methods for the assay of neptunium and other long-lived actinides in environmental matrices

  • A. S. Hursthouse
  • M. S. Baxter
  • K. McKay
  • F. R. Livens


Inductively coupled plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA) have been investigated as alternatives to alpha-spectrometry for the low-level determination of237Np and other actinides in environmental matrices. ICP-MS in particular, has been shown here to offer suitable sensitivity, precision and accuracy compared to the other techniques, with considerably faster sample throughput relative to radiometric and activation approaches. Added advantages of ICP-MS are found to include the abilities to determine other long-lived actinides simultaneously and to quantify239Pu:240Pu ratios. The neutron activation analysis approach was found to be particularly prone to interference especially from uranium nuclides.


Physical Chemistry Mass Spectrometry Inorganic Chemistry Uranium Analysis Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. HOLM, M. NILSSON, Techniques for identifying transuranic speciation in aquatic environments, CEC/IAEA, Vienna, 1981, 43.Google Scholar
  2. 2.
    E. HOLM, Int. J. Appl. Radiation Isotopes, 35 (1984) 285.CrossRefGoogle Scholar
  3. 3.
    A. R. BYRNE, J. Environ. Radioact., 4 (1986) 133.CrossRefGoogle Scholar
  4. 4.
    P. GERMAIN, P. M. GUEGUENAIT, S. MAY, G. PINTE, J. Environ. Radioact., 5 (1987) 319.CrossRefGoogle Scholar
  5. 5.
    P. GERMAIN, G. PINTE, J. Radioanal. Nucl. Chem., 138 (1990) 49.CrossRefGoogle Scholar
  6. 6.
    D. S. POPPLEWELL, G. J. HAM, J. Radioanal. Nucl. Chem., 115 (1987) 191.Google Scholar
  7. 7.
    R. J. PENTREATH, B. R. HARVEY, Mar. Ecol. Prog. Ser., 6 (1981) 243.Google Scholar
  8. 8.
    M. SAKANOUE, Low Level Techniques and Their Applications to Environmental Radioactivity, World Scientific Pub. Co., Singapore, 1988, p. 382.Google Scholar
  9. 9.
    J. H. LANDRUM, M. LINDER N. JONES, Anal. Chem., 41 (1969) 840.CrossRefGoogle Scholar
  10. 10.
    D. W. EFURD, J. DRAKE, F. R. ROENSCH, J. H. CAPPIS, R. E. PERRIN, Los Alamos Natl. Lab., Report LA-10701-MS, 1986.Google Scholar
  11. 11.
    J. E. HALVERSON, Nucl. Instr. Meth. Phys. Res., 223 (1984) 349.CrossRefGoogle Scholar
  12. 12.
    Scottish Universities Research and Reactor Centre Annual Report, 1986–1987 (1988).Google Scholar
  13. 13.
    Scottish Universities Research and Reactor Centre Annual Report, 1987–1988 (1989).Google Scholar
  14. 14.
    Scottish Universities Research and Reactor Centre Research Report, 1988–1989 (1990).Google Scholar
  15. 15.
    J. TOOLE, A. S. HURSTHOUSE, P. McDONALD, K. SAMPSON, M. S. BAXTER, R. D. SCOTT, K. McKAY, Plasma Source Mass Spectrometry, Royal Society of Chemistry, London, 1990, p. 155.Google Scholar
  16. 16.
    D. J. ASSINDER, M. YAMAMOTO, C. K. KIM, R. SEKI, Y. TAKAKU, Y. YAMAUCHI, K. KOMURA, K. UENO, G. S. BOURNE, J. Environ. Radioactivity, 14 (1991) 135.CrossRefGoogle Scholar
  17. 17.
    A. S. HURSTHOUSE, M. S. BAXTER, F. R. LIVENS, H. J. DUNCAN, J. Environ. Radioactivity, 14 (1991) 147.CrossRefGoogle Scholar
  18. 18.
    M. S. BAXTER, R. D. SCOTT, K. W. LEDINGHAM, DOE Report, PECD 7/9/341, 1987.Google Scholar
  19. 19.
    G. P. RUSS Applications of Inductively Coupled Plasma Mass Spectrometry, Blackie, Glasgow, 1989, p. 91.Google Scholar
  20. 20.
    A. S. HURSTHOUSE, PhD Thesis, University of Glasgow, 1990.Google Scholar
  21. 21.
    G. BORTELS, J. R. M. MUTCHINSON, Nucl. Instr. Meth. Phys. Res., 223 (1984) 617.CrossRefGoogle Scholar
  22. 22.
    K. G. W. INN, J. Radioanal. Nucl. Chem., 115 (1987) 91.Google Scholar
  23. 23.
    R. BOWJANOWSKI, S. BALLESTRA, D. VAS, J. Radioanal. Nucl. Chem., 115 (1987) 175.Google Scholar
  24. 24.
    L. A. CURRIE, Anal. Chem., 40 (1968) 586.CrossRefGoogle Scholar
  25. 25.
    A. L. GRAY, A. R. DATE, Analyst, 108 (1983) 1033.CrossRefGoogle Scholar
  26. 26.
    S. E. LONG, R. M. BROWN, Analyst, 111 (1986) 901.CrossRefGoogle Scholar
  27. 27.
    F. E. LICHTE, A. L. MEIER, J. G. CROCK, Anal. Chem., 59 (1987) 1150.CrossRefGoogle Scholar
  28. 28.
    H. P. LONGERICH, B. J. FRYER, D. F. STRONG, C. J. KANTIPULTY, Spectro. Chim. Acta, 42B (1988) 75.Google Scholar
  29. 29.
    W. TING, M. JANGHORBANI, J. Anal. At. Spect., 3 (1988) 325.CrossRefGoogle Scholar
  30. 30.
    M. VAUGHAN, G. HORLICK, Appl. Spectr., 40 (1986) 434.CrossRefGoogle Scholar
  31. 31.
    J. J. KATZ, G. T. SEABORG, L. J. MORSS, The Chemistry of the Actinide Elements, 2nd ed, Chapman and Hall, London, 1991.Google Scholar
  32. 32.
    R. S. HOUK, J. J. THOMPSON, Mass Spect. Rev., 7 (1988) 425.CrossRefGoogle Scholar
  33. 33.
    E. I. HAMILTON, H. E. STEVENS, J. Environ. Radioact., 2 (1985) 23.CrossRefGoogle Scholar
  34. 34.
    VG Isotopes, PlasmaQuad System Manual (Version 2a), 1988.Google Scholar
  35. 35.
    G. H. COLEMAN, Radiochemistry of Plutonium, NAS-NS-3058, 1965.Google Scholar
  36. 36.
    D. N. EDGINTON, Intl. J. Appl. Radiation Isotopes, 18 (1967) 11.CrossRefGoogle Scholar
  37. 37.
    G. A. BURNEY, R. M. HARBOUR, Radiochemistry of Neptunium, NAS-NS-3060, 1974.Google Scholar
  38. 38.
    N. SAITO, Pure Appl. Chem., 56 (1978) 523.Google Scholar
  39. 39.
    B. R. HARVEY, L. M. THURSTON, Aquatic Environ. Protection: Anal. Methods, MAFF, Lowestoft, 1988.Google Scholar
  40. 40.
    W. W. SCHULTZ, E. P. HORWITZ, J. Less-Common Methods, 122 (1986) 125.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • A. S. Hursthouse
    • 1
  • M. S. Baxter
    • 1
  • K. McKay
    • 1
  • F. R. Livens
    • 2
  1. 1.Scottish Universities Research and Reactor CentreGlasgowUK
  2. 2.Institute of Terrestrial Ecology (Merlewood)Grange-over-SandsUK

Personalised recommendations