Antonie van Leeuwenhoek

, Volume 30, Issue 1, pp 225–238 | Cite as

Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii

  • H. G. Trüper
  • H. G. Schlegel


Growth experiments and short term experiments in a stirred cuvette showed thatChromatium okenii strain Ostrau is not able to oxidize any reduced sulphur compounds except sulphide and elementary sulphur; thiosulphate, sulphite, and thioglycolate can not be utilized as reducing agents for photosynthesis. The cells are not able to use H2; hydrogenase could not be demonstrated. In the dark, sulphide is formed from intracellular sulphur and the carbon content of the cells decreases. Growth and turnover of sulphur compounds was followed in the light in the presence and absence of acetate as a second carbon source. Sulphide oxidation depends on the presence of CO2 and on light intensity, i.e. sulphur metabolism is governed by the photosynthetic activity of the cells.


Sulphur Acetate Sulphide Carbon Source Light Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balizkaya, R. M. 1962. Development of green sulphur bacteriaChloropseudomonas ethylicum at various light intensities. [In Russian]. Mikrobiologiya31: 961–965.Google Scholar
  2. Balizkaya, R. M. andKondratieva, E. N. 1963. The effect of light intensity on the use of CO2 and organic compounds in photosynthesis byChloropseudomonas ethylicum. [In Russian]. Mikrobiologiya32: 193–199.Google Scholar
  3. Bertolacini, R. J. andBarney, J. E. 1957. Coloric determination of sulfate with barium chloranilate. Anal. Chem.29: 281–283.Google Scholar
  4. Breuker, E. 1964. Die Verwertung von intrazellulärem Schwefel durchChromatium vinosum im aeroben und anaeroben Licht- und Dunkelstoffwechsel. Zentr. Bakteriol. Parasitenk. II. Abt. Orig. (in press).Google Scholar
  5. Calvin, M., Heidelberger, C., Reid, J. C., Tolbert, B. M. andYankwich, P. F. 1949. Isotopic carbon. John Wiley & Sons, New York.Google Scholar
  6. Delwiche, E. A. 1951. Activators for the cysteine desulfhydrase system of anEscherichia coli mutant. J. Bacteriol.62: 717–722.PubMedGoogle Scholar
  7. Hendley, D. D. 1955. Endogeneous fermentation in Thiorhodaceae. J. Bacteriol.70: 625–634.PubMedGoogle Scholar
  8. Hurlbert, R. E. andLascelles, J. 1963. Ribulose diphosphate carboxylase in Thiorhodaceae. J. Gen. Microbiol.33: 445–458.PubMedGoogle Scholar
  9. Kaplan, I. R., andRittenberg, S. C. 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol.34: 195–212.PubMedGoogle Scholar
  10. Kran, G., Schlote, F. W. undSchlegel, H. G. 1963. Cytologische Untersuchungen anChromatium okenii Perty. Naturwissenschaften50: 728–730.Google Scholar
  11. Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. J. Bacteriol.64: 187–196.PubMedGoogle Scholar
  12. Müller, G. O. 1954. Praktikum der quantitativen chemischen Analyse. S. Hirzel Verlag, Leipzig.Google Scholar
  13. van Niel, C. B. 1932. On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol.3: 1–112.Google Scholar
  14. van Niel, C. B. 1936. On the metabolism of the Thiorhodaceae. Arch. Mikrobiol.7: 323–358.Google Scholar
  15. Osnizkaya, L. K. 1958. The use of organic compounds by the photosynthetic bacterium from Beloie lake. [In Russian]. Mikrobiologiya.27: 665–672.Google Scholar
  16. Pachmayr, F. 1960. Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Thesis, München (Univ.).Google Scholar
  17. Peck, H. D., Jr. 1961. Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev.26 (1962): 67–94.Google Scholar
  18. Peck, H. D., Jr. andGest, H. 1957. Hydrogenase ofClostridium butylicum. J. Bacteriol.73: 569–580.PubMedGoogle Scholar
  19. Pfennig, N. 1961. Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften48: 136.Google Scholar
  20. Pfennig, N. 1962. Über die Kultur vonChromatium okenii. Vorträge aus dem Gesamtgebiet der Botanik, Neue Folge,1: 83–84.Google Scholar
  21. Porter, J. R. 1950. Bacterial chemistry and physiology. John Wiley & Sons, New York.Google Scholar
  22. la Rivière, J. W. M. 1958. On the microbial metabolism of the tartaric acid isomers. Thesis, Delft.Google Scholar
  23. Roelofsen, P. A. 1934. On the metabolism of the purple sulphur bacteria. Proc. Koninkl. Ned. Akad. van Wetenschap. Proc.37: 660–669.Google Scholar
  24. Schlegel, H. G. 1962. Die Speicherstoffe vonChromatium okenii. Arch. Mikrobiol.42: 110–116.PubMedGoogle Scholar
  25. Schlegel, H. G. undLafferty, R. 1961. Radioaktivitätsmessungen an Einzellern auf Membranfiltern. Arch. Mikrobiol.38: 52–54.PubMedGoogle Scholar
  26. Schlegel, H. G. undPfennig, N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Arch. Mikrobiol.38: 1–39.PubMedGoogle Scholar
  27. Schmidt, K., Liaaen Jensen, S. undSchlegel, H. G. 1963. Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenii Perty. Arch. Mikrobiol.46: 117–126.PubMedGoogle Scholar
  28. Shaposhnikov, V. N., Osnizkaya, L. K. andChudina, V. I. 1961. Development of the purple sulphur bacteriumChromatium vinosum as a function of light intensity. [In Russian]. Mikrobiologiya30: 825–832.Google Scholar
  29. Sistrom, W. R. 1962. Observations on the relationship between the formation of photopigments and the synthesis of protein inRhodopseudomonas spheroides. J. Gen. Microbiol.28: 599–605.PubMedGoogle Scholar
  30. Skarzynski, B. andSzczepkowski, T. W. 1959. Oxidation of thiosulphate byThiobacillus thioparus. Nature183: 1413–1414.PubMedGoogle Scholar
  31. Smith, A. J. 1964. Sulphur metabolism ofChromatium strain D and rhodanese activity in extracts. J. Gen. Microbiol.34: ix-x.Google Scholar
  32. Taylor, J. J. 1958. Thiorhodaceae. I. The effects of sodium thioglycolate on the photosynthetic and dark metabolism of purple sulphur bacteria. Can. J. Microbiol.4: 425–433.PubMedGoogle Scholar
  33. Toennies, G. andBakay, B. 1953. Photonephelometrical microdetermination of sulfate and organic sulfur. Anal. Chem.25: 160–165.Google Scholar
  34. Trüper, H. G., 1964. CO2-Fixierung und Intermediärstoffwechsel beiChromatium okenii Perty. Arch. Mikrobiol.49: 23–50.PubMedGoogle Scholar
  35. Van Slyke, D. D. andFolch, J., 1940. Manometric carbon determination. J. Biol. Chem.136: 509–541.Google Scholar
  36. Wurzschmitt, B. undZimmermann, W. 1950. Die Metallbombe als Hilfsmittel in der Elementaranalyse. Fortschr. Chem. Forsch.1: 485–507.Google Scholar

Copyright information

© Swets & Zeitlinger 1964

Authors and Affiliations

  • H. G. Trüper
    • 1
  • H. G. Schlegel
    • 1
  1. 1.Institute of MicrobiologyThe UniversityGöttingenGermany

Personalised recommendations