Antonie van Leeuwenhoek

, Volume 29, Issue 1, pp 121–153 | Cite as

Investigations on theSphaerotilus-Leptothrix group

  • E. G. Mulder
  • W. L. van Veen
Article

Abstract

Thirty-fourSphaerotilus andLeptothrix strains were isolated from sewage, activated sludge and iron-containing ditch- and well-water, and their morphological and physiological characters studied. The organisms were grown under different conditions, e.g. on peptoneglucose agar and yeast-extract-manganous-carbonate agar, and in running ditch-water containing ferrous iron. Growth of these bacteria in synthetic media, with glucose as carbon source and aspartic and glutamic acids or inorganic nitrogen compounds as nitrogen source, required added vitamin B12 unless nitrogen was supplied as hydrolyzed casein or as a mixture ofl-amino acids. Methionine was found to be responsible for this replacement of vitamin B12.

Five different types of sheath-forming bacteria were distinguished in the present study. Type I is the typical sewage organismSphaerotilus natans. It has large cells, grows well with relatively high concentrations of organic substrates, but cannot oxidize manganous compounds. In running ditch-water containing ferrous iron, ferric hydroxide may be deposited in and on its sheaths. AlthoughS. natans under such conditions may resemble the iron bacteriumLeptothrix ochracea, it has relatively long sheaths, partly filled with cells in contrast with the short and mostly empty sheaths of the latter.S. natans could be readily reisolated from its iron-bacterium cultures but very seldom from crude cultures ofL. ochracea; thus the two organisms are clearly different. Types II and III have relatively large cells, respond poorly to organic nutrients, but are able to oxidize manganous compounds. Type II forms fungus-like flocks in liquid media and resembles microscopicallyL. lopholea, with which it may be identical. Type III resemblesL. ochracea more closely than does any other type, but is probably not identical with it; the nameL. pseudo-ochracea sp.n. is proposed for this type. Type IV is intermediate between types I and V. In media with relatively high concentrations of organic nutrients it behaves like a sewage organism, but in poor media containing ferrous and manganous compounds, it behaves like an iron bacterium, depositing large amounts of ferric and manganic oxides in and on its sheaths; for this type the nameL. cholodnii sp.n. is proposed. Type V has small cells, grows poorly in all media tested, but actively oxidizes manganous compounds; the nameLeptothrix discophora is reserved for this type.

The globular inclusions in the cells ofS. natans and other members of theSphaerotilus-Leptothrix group consist of poly-β-hydroxybutyrate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beger, H. undBringmann, G. 1953. Die Scheidenstruktur des AbwasserbakteriumsSphaerotilus und des EisenbakteriumsLeptothrix im elektronenmikroskopischen Bilde und ihre Bedeutung für die Systematik dieser Gattungen. Zentr. f. Bakteriol. Parasitenk. II. Abt.107: 318–334.Google Scholar
  2. van Beneden, G. 1951. Contribution nouvelle à l'étude des ferrobactériacées. Hydrobiol.III: 1–64.Google Scholar
  3. Büsgen, M. 1894. Kulturversuche mitCladothrix dichotoma. Ber. deut. botan. Ges.12: 147–152.Google Scholar
  4. Cataldi, M. S. 1939. Estudio fisiólogico sistemático de algunasChlamydobacteriales. Thesis, Univ. of Buenos Aires.Google Scholar
  5. Charlet, E. undSchwartz, W. 1954. Beiträge zur Biologie der Eisenmikroben. I. Untersuchungen über die Lebensweise vonLeptothrix ochracea und einigen begleitenden Eisenmikroben. Schweiz. Z. Hydrol.16: 318–341.Google Scholar
  6. Cholodny, N. 1926. Die Eisenbakterien. Beiträge zu einer Monographie. Pflanzenforsch., H4. Hrsg. von Kolkwitz. G. Fischer, Jena.Google Scholar
  7. Davis, B. D. 1950. Mutants ofEscherichia coli requiring methionine or vitamin B12. J. Bacteriol.60: 17–28.PubMedGoogle Scholar
  8. Deinema, M. H. 1961. Intra- and extra-cellular lipid production by yeasts. Meded. Landbouwhogeschool Wageningen61 (2): 1–54.Google Scholar
  9. Dondero, N. C. 1961.Sphaerotilus, its nature and economic significance. Advances in Appl. Microbiol.3: 77–107.Google Scholar
  10. Dondero, N. C., Phillips, R. A. andHeukelekian, H. 1961. Isolation and preservation of cultures ofSphaerotilus. Appl. Microbiol.9: 219–227.PubMedGoogle Scholar
  11. Dorff, P. 1934. Die Eisenorganismen. Pflanzenforsch. H16. Hrsg. von Kolkwitz. G. Fischer, Jena.Google Scholar
  12. Doudoroff, M. andStanier, R. Y. 1959. Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature183: 1440–1442.PubMedGoogle Scholar
  13. Ellis, D. 1919. Iron bacteria. Methuen & Co. London.Google Scholar
  14. Forsyth, W. G. C., Hayward, A. C. andRoberts, J. B. 1958. Occurrence of poly-β-hydroxybutyric acid in aerobic gram-negative bacteria. Nature182: 800–801.PubMedGoogle Scholar
  15. Ganter, I. R. undSchwartz, W. 1956. Beiträge zur Biologie der Eisenmikroben II.Leptothrix crassa Chol. Schweiz. Z. Hydrol.18: 171–192.Google Scholar
  16. Harrison, M. E. andHeukelekian, H. 1958. Slime infestation — Literature Review. I.Sphaerotilus. Sewage and Indust. Wastes30: 1278–1302.Google Scholar
  17. Helleiner, C. W., Kisliuk, R. L. andWoods, D. D. 1958. Cobalamin and the synthesis of methionine by cell-free extracts ofEscherichia coli. J. Gen. Microbiol.18: XV.Google Scholar
  18. Höhnl, G. 1955. Ernährungs- und Stoffwechselphysiologische Untersuchungen anSphaerotilus natans. Arch. f. Mikrobiol.23: 207–250.Google Scholar
  19. Krebs, H. 1954. The tricarboxylic cycle. p. 109–171. In D. M. Greenberg, Pathways of metabolism Vol. I. Academic Press, New York.Google Scholar
  20. Lackey, J. B. andWattie, E. 1940. The biology ofSphaerotilus natans Kützing in relation to bulking of activated sludge. Public Health Repts. (U.S.)55: 975–987.Google Scholar
  21. Lemoigne, M. 1927. Etudes sur l'autolyse microbienne origine de l'acide-β-oxybutyrique formé par autolyse. Ann. Inst. Pasteur41: 148–165.Google Scholar
  22. Lieske, R. 1919. Zur Ernährungsphysiologie der Eisenbakterien. Centr. f. Bakteriol. Parasitenk. II. Abt.42: 413–425.Google Scholar
  23. Linde, P. 1913. Zur Kenntnis vonCladothrix dichotoma Cohn. Centr. f. Bakteriol. Parasitenk. II. Abt.39: 369–394.Google Scholar
  24. McMeekin, T. L. 1954. Milk proteins, p. 427. In H. Neurath and K. Bailey, The proteins. Academic Press, New York.Google Scholar
  25. Molisch, H. 1910. Die Eisenbakterien. G. Fischer, Jena.Google Scholar
  26. Mulder, E. G., Deinema, M. H., van Veen, W. L. andZevenhuizen, L. P. T. M. 1962. Polysaccharides, lipids and poly-β-hydroxybutyrate in microorganisms. Recueil Trav. Chim. Pays-Bas.81: 797–809.Google Scholar
  27. Mulder, E. G. andvan Veen, W. L. 1962a. TheSphaerotilus-Leptothrix group; VIIIth Intern. Congr. for Microbiol. Montreal. Abstr. B 12.7.Google Scholar
  28. Mulder, E. G. andvan Veen, W. L. 1962b. TheSphaerotilus-Leptothrix group. Antonie van Leeuwenhoek28: 236–237.Google Scholar
  29. Präve, P. 1957. Untersuchungen über die Stoffwechselphysiologie des EisenbakteriumsLeptothrix ochracea Kützing. Arch. f. Mikrobiol.27: 33–62.Google Scholar
  30. Pringsheim, E. G. 1949a. The filamentous bacteriaSphaerotilus, Leptothrix, Cladothrix and their relation to iron and manganese. Trans. Roy. Soc. (London) Ser. B.233: 453–482.Google Scholar
  31. Pringsheim, E. G. 1949b. Iron bacteria. Biol. Revs.24: 200–245.Google Scholar
  32. Rouf, M. A. andStokes, J. L. 1962. Isolation identification of the sudanophilic granules ofSphaerotilus natans. J. Bacteriol.83: 343–347.PubMedGoogle Scholar
  33. Scheuring, L. 1957.Sphaerotilus natans, gelöste und ungelöste Fragen. Wasser und Abwasser2: 39–51.Google Scholar
  34. Skerman, V. B. D., Dementjeva, G. andCarey, B. J. 1957. Intracellular deposition of sulphur bySphaerotilus natans. J. Bacteriol.73: 504–512.PubMedGoogle Scholar
  35. Stokes, J. L. 1954. Studies on the filamentous sheathed iron bacteriumSphaerotilus natans. J. Bacteriol.67: 278–291.PubMedGoogle Scholar
  36. Winogradsky, S. 1922. Eisenbakterien als Anorgoxydanten. Centr. Bakteriol. Parasitenk. II. Abt.57: 1–21.Google Scholar
  37. Wuhrmann, K. 1946. Beitrag zur Kenntnis der Physiologie von Schutzwasserorganismen. Verhandl. Schweiz. naturforsch. Ges.126: 142–143.Google Scholar
  38. Wuhrmann, K. 1949. Ueber den Aminosäuregehalt gereinigten und ungereinigten Abwassers. Verhandl. Intern. Ver. theor. u. angew. Limnologie10: 580–586.Google Scholar
  39. Wuhrmann, K. andKoestler, S. 1950. Ueber den Vitaminbedarf des AbwasserbakteriumsSphaerotilus natans Kütz. Verhandl. Schweiz. naturforsch. Ges.130: 177–178.Google Scholar
  40. Zikes, H. 1915. Vergleichende Untersuchungen überSphaerotilus natans (Kützing) undCladothrix dichotoma (Cohn) auf Grund von Reinkulturen. Centr. f. Bakteriol. Parasitenk. II. Abt.43: 529–552.Google Scholar

Copyright information

© Swets & Zeitlinger 1963

Authors and Affiliations

  • E. G. Mulder
    • 1
  • W. L. van Veen
    • 1
  1. 1.Laboratory of MicrobiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations