Use of random-genetic models in the study of sedimentary processes

  • J. Jacod
  • P. Joathon


To study sedimentary phenomena, we introduce random-genetic models in which genetic hypotheses and structural random elements occur for the main part. Starting from geologic hypotheses we choose principal factors which may be random functions or random variables. These factors are: depth, nature of the facies, sedimentation rate, and subsidence. Equations of evolution link the factors. Depth is a Markov process, but generally the resultant sequence does not make a Markov chain or Markov process. Three examples of such models are given with the results of simulations.

Key words

simulation mathematical models sedimentology stratigraphy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agterberg, F. P., and Barnejee, I., 1969, Stochastic model for the deposition of varves in glacial lake Barlow-Ojibway, Ontario, Canada: Can. Jour. Earth Sci., v. 6, no. 4, p. 625–652.Google Scholar
  2. Bonham-Carter, G. F., and Sutherland, A. J., 1968, Mathematical model andfortran IV program for computer simulation of deltaic sedimentation: Kansas Geol. Survey Computer Contr. 24, 56 p.Google Scholar
  3. Feller, W., 1966, An introduction to probability theory and its applications, v. II: John Wiley & Sons, New York, 626 p.Google Scholar
  4. Jacod, J., and Joathon, P., 1970, Estimation des paramètres dans les modèles aléatories génétiques représentant des processus de sédimentation: Revue de l'Institut Français du Pétrole, in press.Google Scholar
  5. Krumbein, W. C., 1967,fortran IV computer program for Markov chain experiments in geology: Kansas Geol. Survey Computer Contr. 13, 38 p.Google Scholar
  6. Krumbein, W. C., 1968,fortran IV computer program for simulation of transgression and regression with continuous-time Markov models: Kansas Geol. Survey Computer Contr. 26, 38 p.Google Scholar
  7. Krumbein, W. C., and Dacey, M. F., 1969, Markov chains and embedded Markov chains in geology: Jour. Intern. Assoc. Math. Geol., v. 1, no. 1, p. 79–96.Google Scholar
  8. Matheron, G., 1967, Eléments pour une théorie des milieux poreux: Masson, Paris, 106 p.Google Scholar
  9. Matheron, G., 1969, Les processus d'Ambarzoumian et leur application en géologie: Ecole des Mines (Fontainebleau), unpubl. manuscript, 126 p.Google Scholar
  10. Pyke, R., 1961, Markov renewal processes: definition and preliminary properties: Ann. Math Stat., v. 32, p. 1231–1242.Google Scholar
  11. Schwarzacher, W., 1969, The use of Markov chains in the study of sedimentary cycles: Jour. Intern. Assoc. Math. Geol., v. 1, no. 1, p. 17–41.Google Scholar

Copyright information

© Plenum Publishing Corporation 1971

Authors and Affiliations

  • J. Jacod
    • 1
  • P. Joathon
    • 1
  1. 1.Centre de Morphologie MathématiqueEcole des Mines de ParisFrance

Personalised recommendations