Journal of Radioanalytical and Nuclear Chemistry

, Volume 152, Issue 1, pp 11–20 | Cite as

Radiolysis of nitrate-alcohol binary mixtures at pH 12

  • S. F. Patil
  • A. G. Bedekar
  • D. V. Bade
  • M. V. Aher


Gamma-radiolysis of alkaline binary mixtures of nitrate-alcohol (1-propanol and 1-butanol) has been investigated at a fixed pH of 12. The products of radiolysis, mainly nitrite, aldehyde and hydrogen peroxide were estimated. Also the effect of concentration of each species present in the mixture on the G-values of the products formed has been examined. The G-values of each of the products are found to be lower in basic medium in binary mixtures as compared to those obtained at neutral pH; other conditions being kept constant. However, the yields of products in nitrate solutions show higher values at basic pH in comparison with their counterparts at neutral pH. Results are explained on the basis of reaction mechanism that operates during the process of radiolysis, leading to the formation of the different products.


Hydrogen Nitrate Physical Chemistry Hydrogen Peroxide Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. T. ALLAN, C. M. BECK, J. Am. Chem. Soc., 86 (1964) 1483.CrossRefGoogle Scholar
  2. 2.
    A. APPLEBY, G. SCHOLES, M. SIMIC, J. Am. Chem. Soc., 85 (1963) 3891.CrossRefGoogle Scholar
  3. 3.
    H. P. SCHUCHMANN, C. Von. SONNTAG, Radiat. Phys. Chem., 32 (1988) 149.Google Scholar
  4. 4.
    Z. D. DRAGNIC, I. G. DRAGNIC, J. Phys. Chem., 77(6) (1973) 765.CrossRefGoogle Scholar
  5. 5.
    J. T. ALLAN, J. Phys. Chem., 68(9) (1964) 2697.Google Scholar
  6. 6.
    Ch. BAQUEY, J. C. ROUX, J. SUTTON, J. Phys. Chem., 74(24) (1970) 4210.CrossRefGoogle Scholar
  7. 7.
    S. F. PATIL, R. M. PATIL, M. MUDALIAR, J. Radioanal. Nucl. Chem., 139(2) (1990) 323.CrossRefGoogle Scholar
  8. 8.
    G. G. JAYSON, G. SCHOLES, J. WIESS, J. Chem. Soc., 1358 (1957).Google Scholar
  9. 9.
    M. ANBAR, MEYERSTEIN, Proc. Chem. Soc., 23 (1964).Google Scholar
  10. 10.
    J. RABANI, G. STEIN, J. Chem. Phys., 37 (1962) 1865.CrossRefGoogle Scholar
  11. 11.
    M. DANIELS, E. ERIC, E. WIGG, J. Phys. Chem., 71(4) (1967) 1024.CrossRefGoogle Scholar
  12. 12.
    M. B. HYDER, J. Phys. Chem., 69(6) (1965) 1858.Google Scholar
  13. 13.
    M. B. SHINN, Ind. Eng. Chem., (Anal. Ed.) 14 (1941) 312.Google Scholar
  14. 14.
    G. R. JOHNSON, G. SCHOLES, Analyst., 79 (1954) 217.CrossRefGoogle Scholar
  15. 15.
    A. O. ALLEN, C. J. HOCHANADEL, J. A. GHORMLEY, T. W. DAVIS, J. Phys. Chem., 56 (1952) 575.CrossRefGoogle Scholar
  16. 16.
    S. F. PATIL, A. G. BEDEKAR, R. M. PATIL, to be published.Google Scholar
  17. 17.
    H. A. MAHLMAN, J. Chem. Phys., 35 (1961) 936.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • S. F. Patil
    • 1
  • A. G. Bedekar
    • 1
  • D. V. Bade
    • 1
  • M. V. Aher
    • 1
  1. 1.Department of ChemistryUniversity of PoonaPune(India)

Personalised recommendations