A very sensitive LSC procedure to determine Ni-63 in environmental samples, steel and concrete

  • C. Scheuerer
  • R. Schupfner
  • H. Schüttelkopf
Advances in Instrumentation and Sofware for Radioanalytical Techniques


This procedure to determine Ni-63 contributes to a safe and economically resonable decommissioning of nuclear power plants. Co-60, Fe-55 and Ni-63 are the most abundant long-lived radionuclides associated with contaminated piping, hardware and concrete for a period of several decades of years after shutdown, Samples are carefully ashed, leached, or dissolved by suitable mixtures of acids. The analysis starts with the absorption of Ni2+ on the chelating resin CHELEX 100. The next purification steps include an anionic exchange column and a precipitation as Ni-dimethyl-glyoxime, which is extracted into chloroform. After reextraction with sulfuric acid the solution containing Ni2+ is mixed with a scintillation cocktail and counted in an anticoincidence shielded LSC. The decontamination factors are determined for all important artificially and naturally occurring radionuclides ranging from above 104 to 109. The chemical yield adopts a value of (95±5)%. up to maximum sample amounts of 0,4 g steel, 5 g concrete and about 100 g of environmental samples the detection limits are about 5 mBq per sample or 12 mBq/g steel, 1 mBq/g concrete and 0,05 mBq/g environmental sample at a counting time of 1000 minutes.


Chloroform Sulfuric Acid Radionuclide Power Plant Nuclear Power Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. LEDERER, V. SHIRLEY, Table of Isotopes, John Wiley and Sons, New York, 7. Auflage, 1978Google Scholar
  2. 2.
    K.H. LIESER, Einführung in die Kernchemie, Verlag Chemie, Weinheim, 2. Auflage, 1980Google Scholar
  3. 3.
    ICRP Publikation, Radionuclide Transformations, Pergamonn Press, New York, Volumes 11-13, 1983Google Scholar
  4. 4.
    D. ROBERTSON, ET. AL, Radioaktive Waste Management and the Nuclear Fuel Cycle, Volume 5, Harwood Academic Publishers GmbH, USA, 4. Auflage, 1984Google Scholar
  5. 5.
    K. WAY, ET. AL, Nuclear Data Sheets, Academic Press, New York, 1968Google Scholar
  6. 6.
    E. HOLM, Appl. Radiat. Isot., 43 (1992) 371–376Google Scholar
  7. 7.
    M. KOIDE, J. Environ. Radioactivity, 2 (1985) 261–282CrossRefGoogle Scholar
  8. 8.
    J. ARNDT, Untersuchungen zur Emission von P-32, Fe-55 und Ni-63 mit Abwässern aus Kernkraftwerken in der Bundesrepublik Deutschland, Dietrich Reimer Verlag, Berlin, 1982Google Scholar
  9. 9.
    L.J. KIRBY, The Radiochemistry of Nickel, National Academy of Science, Nuclear Sience Series, NAS-NS, November, 1961Google Scholar
  10. 10.
    G.H. KRAMER, Helth Physics, 47 (1984) 623–627Google Scholar
  11. 11.
    I.S. BATH, ET. AL., Anal. Chem., 48 (1976) 224CrossRefPubMedGoogle Scholar
  12. 12.
    M.O. LAI, H.A. GOYA U.S. Naval Radiological Defense Laboratory, USNRDL-TR 924, 1965Google Scholar
  13. 13.
    C.L. LEWIS, W.L. OTT, Analytical Chemistry of Nickel, Pergamon Press, Oxford, 1970Google Scholar
  14. 14.
    H. LUX, W. FICHTER, Quantitative anorganische Analyse, Springer Verlag, Berlin, 9. Auflage, 1992Google Scholar
  15. 15.
    J. STARY, The Solvent Extraction of Metal Chelates, Pergamon Press, New York, 1. Auflage, 1964Google Scholar
  16. 16.
    K. DEBERTIN, R.G. HELMER, Gamma-and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Amsterdam, 1988Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • C. Scheuerer
    • 1
  • R. Schupfner
    • 1
  • H. Schüttelkopf
    • 2
  1. 1.Environmental Radioactivity Laboratory, Institut für Organische ChemieUniversity of RegensburgRegensburgGermany
  2. 2.Karlsruhe Nuclear Research CenterKarlsruheGermany

Personalised recommendations