, Volume 47, Issue 1, pp 4–8 | Cite as

The discovery of antidepressants: A winding path

  • A. Pletscher


Modern treatment of mental depression started with the availability of monoamine oxidase (MAO) inhibitors and tricyclic antidepressants. These drugs also contributed to the early development of psychopharmacology. Attempts to improve the anti-tuberculous action of the hydrazine derivative isoniazid by developing derivatives thereof led to the synthesis of iproniazid. Its introduction as the first modern antidepressant was based on three unexpected actions of the drug: MAO-inhibition, ‘reversal’ of reserpine-induced sedation, and the presence of psychostimulation as a clinical side effect in man. However, the initial success of iproniazid and other MAO inhibitors, hydrazides and non-hydrazides, was curtailed by the occurrence of undesirable side effects such as potentiation of the blood-pressure elevating action of food amines. The tricyclic antidepressants were a development of the class of antihistamines, one of which, chlorpromazine, showed neuroleptic activity. A congener of this compound, imipramine, was discovered by clinical observation to have unexpected antidepressant effects. The clinical success of this drug (which is still in use) led to the development of a successful series of other tricyclic and non-tricyclic antidepressants. Progress in the elucidation of possible mechanisms of the action of the tricyclic compounds has helped this development. Recent advances in basic research have also induced a revival of MAO-inhibitors since, due to the discovery of MAO-subtypes, inhibitors with higher specificity and fewer undesirable side effects are now available.

Key words

Depression antidepressants psychopharmacology tricyclic antidepressants monoamine oxidase inhibition iproniazid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayd, F.J., and Blackwell, B., Discoveries in Biological Psychiatry. J. B. Lippincott, Philadelphia/Toronto 1970.Google Scholar
  2. 2.
    Bein, J. J., The pharmacology of Rauwolfia. Pharmac. Rev.8 (1956) 435–483.Google Scholar
  3. 3.
    Bernstein, J., Lott, W. A., Steinberg, B. A., and Yale, H. L., Chemotherapy of experiemental tuberculosis. V. Isonicotinic acid hydrazide (Nydrazid) and related compounds. Am. Rev. Tuberculosis65 (1952) 357–364.Google Scholar
  4. 4.
    Bogdanski, D. F., Pletscher, A., Brodie, B. B., and Udenfried, S., Identification and assay of serotonin in brain. J. Pharmac. exp. Ther.117 (1956) 82–88.Google Scholar
  5. 5.
    Brodie, B. B., Pletscher, A., and Shore, P. A., Possible role of serotonin in brain function and reserpine action. J. Pharmac. exp. Ther.111 (1956) 9.Google Scholar
  6. 6.
    Cade, J. F. J., The story of lithium, in: Discoveries in Biological Psychiatry, pp. 218–229. Eds F. J. Ayds and B. Blackwell. J. B. Lippincott, Philadelphia/Toronto 1970.Google Scholar
  7. 7.
    Carlsson, A., and Lindqvist, M., Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta pharmac. toxic.20 (1963) 140–144.Google Scholar
  8. 8.
    Charpentier, P., Sur la constitution d'un diméthylamino-N-phenothiazine, C. r. hebd. Séanc. Acad. Sci.225 (1947) 306–308.Google Scholar
  9. 9.
    Chessin, M., Dubnick, B., Kramer, E. R., and Scott, C. C., Modification of pharmacology of reserpine and serotonin by iproniazid. Fedn Proc.15 (1956) 409.Google Scholar
  10. 10.
    Courvoisier, S., Fournel, J., Ducrot, M., Kolsky, M., and Koetschet, P., Propriétés pharmacodynamiques du chlorhydrate de chloro-3-(diméthylamino-3-propyl)-10-phénothiazine (4.560 R.P.). Archs int. pharmacodyn.92 (1953) 305–361.Google Scholar
  11. 11.
    Delay, J., Deniker, P., and Harl, J. M., Utilisation en thérapeutique psychiatrique d'une phénothiazine d'action centrale élective (4560 R). Annls méd.-psychol.110 pt. 2 (1952) 112–117.Google Scholar
  12. 12.
    Fox, H. H., and Gibas, J. T., Synthetic tuberculostats. VII. Monoalkyl derivates of isonicotinylhydrazine. J. org. Chem.18 (1953) 994–1002.Google Scholar
  13. 13.
    Grunberg, E., and Schnitzer, R. J., Studies on the activity of hydrazine derivatives of isonicotinic acid in the experimental tuberculosis of mice. Quart. Bull. Sea View Hospital13 (1952) 3–11.Google Scholar
  14. 14.
    Hoffmann, A., The discovery of LSD and subsequent investigations on naturally occurring hallucinogens, in: Discoveries in Biological Psychiatry, pp. 91–106. Eds F. J. Ayd and B. Blackwell, J. B. Lippincott, Philadelphia/Toronto 1970.Google Scholar
  15. 15.
    Kamman, G. R., Freeman, J. G., and Lucero, R. J., The effect of 1-isonicotinyl-2-isopropyl hydrazide (IIH) on the behaviour or long-term mental patients. J. nerv. ment. Dis.118 (1953) 391–407.Google Scholar
  16. 16.
    Kuhn, R., Die Behandlung depressiver Zustände mit einem Iminodibenzylderivat (G 22355). Schweiz. med. Wschr.87 (1957) 1135–1140.Google Scholar
  17. 17.
    Kuhn, R., The imipramine story, in: Discoveries in Biological Psychiatry, pp. 205–217. Eds F. J. Ayd and B. Blackwell, J. B. Lippincott, Philadelphia/Toronto 1970.Google Scholar
  18. 18.
    Laborit, H., Therapeutique neuroplégique et hibernation artificielle: essai d'éclairissement d'une équivoque. Presse med.G2 (1954) 359–362.Google Scholar
  19. 19.
    Lehmann, H. E., and Kline, N. S., Clinical discoveries with antidepressant drugs, in: Discoveries in Pharmacology, vol.1: Psycho- and Neuropharmacology, pp. 209–247. Eds M. J. Parnham and J. Brunivels. Elsevier Science Publishers, B. V. 1983.Google Scholar
  20. 20.
    Loomer, H. P., Saunders, J. C., and Kline, N. S., Iproniazid, an amine oxidase inhibitor, as an example of a psychic energizer. Congr. Rec. (1957) 1382–1390.Google Scholar
  21. 21.
    Loomer, H. P., Saunders, J. C., and Kline, N. S., A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiat. Res. Rep. Am. psychiat. Ass.8 (1958) 129–141.Google Scholar
  22. 22.
    Otte, H. A., Siefken, W., and Domagk, G., Neoteben, ein neues, hochwirksames Tuberkulostatikum und die Beziehungen zwischen Konstitution und tuberkulostatischer Wirksamkeit von Hydrazinderivaten. Naturwissenschaften39 (1952) 118.Google Scholar
  23. 23.
    Pletscher, A., Shore, P. A., and Brodie, B. B., Serotonin as a mediator of reserpine action in brain. J. Pharmac. exp. Ther.116 (1956) 84–89.Google Scholar
  24. 24.
    Pletscher, A., Gey, K. F., and Zeller, P., Monoaminooxydase-Hemmer: Biochemie, Chemie, Pharmakologie, Klinik, in: Progress in Drug Research, vol. 2, pp. 417–590. Ed. E. Jucker. Birkhäuser Verlag, Basel/Stuttgart 1960.Google Scholar
  25. 25.
    Sandler, M., Monoamine oxidase inhibitors in depression: History and mythology. J. Psychopharmac.4 (1990) 136–139.Google Scholar
  26. 26.
    Smith, J. A., The use of the isopropylderivative of isonicotinylhydrazine (Marsilid) in the treatment of mental disease. Am. Practitioner4 (1953) 519–520.Google Scholar
  27. 27.
    Sneader, W., Drug Discovery: The Evolution of Modern Medicines. John Wiley and Sons, New York 1985.Google Scholar
  28. 28.
    Sulser, F., and Mishra, R., The discovery of tricyclic antidepressants and their mode of action, in: Discoveries in Pharmacology, vol. 1: Psycho- and Neuropharmacology, pp. 233–247. Eds M. J. Parnham and J. Brunivels. Elsevier Science Publishers B. V. 1983.Google Scholar
  29. 29.
    Zeller, E. A., and Barsky, J., In vivo inhibition of liver and brain monoamine oxidase by 1-isonicotinyl-2-isopropyl hydrazine. Proc. Soc. exp. Biol. N.Y.81 (1952) 459–461.Google Scholar
  30. 30.
    Zeller, E. A., Barsky, J., Berman, E. R., and Fouts, J. R., Action of isonicotinic acid hydrazide and related compounds on enzymes involved in the autonomic nervous system. J. Pharmac. exp. Ther.106 (1952) 427–428.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • A. Pletscher
    • 1
  1. 1.Swiss Academy of Medical SciencesBaselSwitzerland

Personalised recommendations