Journal of Radioanalytical and Nuclear Chemistry

, Volume 115, Issue 2, pp 263–288 | Cite as

Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry

  • A. S. Murray
  • R. Marten
  • A. Johnston
  • P. Martin


The analytical potential of low level, high resolution gamma-ray spectrometry for naturally occurring radionuclides at environmental levels is described, with particular emphasis on detector background levels and sensitivity. Comparisons are drawn between the performance of a specially designed low background detector system, and that of standard “off the shelf” devices. Sample characteristics, calibration procedures and checks, are described, and empirical minimum detection limits of between 0.4 Bq·kg−1 (226Ra,228Th) and 10 Bq·kg−1 (210Pb) are derived for soil or sediment samples of about 250 g. Representative analyses of a variety of environmental samples, including water, plant material, animal tissue and sediment, are given to illustrate the routine use of the spectrometer.


Radionuclide Detector System Sediment Sample 210Pb Environmental Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. G. BARTELS, Health Phys., 38 (1980) 89.Google Scholar
  2. 2.
    D. C. CAMP, C. GATROUSIS, L. A. MAYNARD, Nucl. Instr. Methods, 117 (1974) 189.Google Scholar
  3. 3.
    J. A. COOPER, R. W. PERKINS, Nucl. Instr. Methods, 99 (1972) 125.Google Scholar
  4. 4.
    H. H. CUTSHALL, I. L. LARSEN, C. R. OLSEN, Nucl. Instr. Methods, 206 (1983) 309.Google Scholar
  5. 5.
    K. DEBERTIN, U. SCHÖTZIG, Nucl. Instr. Methods, 158 (1978) 471.Google Scholar
  6. 6.
    R. J. ELSINGER, P. T. KING, W. S. MOORE, Anal. Chim. Acta, 144 (1982) 277.Google Scholar
  7. 7.
    H. L. MALM, M. M. WATT, I. BOSTOCK, J. L. CAMPBELL, P. JAGAM, J. J. SIMPSON, Nucl. Instr. Methods, 223 (1984) 420.Google Scholar
  8. 8.
    J. MICHEL, W. S. MOORE, P. T. KING, Anal. Chem., 53 (1981) 1885.Google Scholar
  9. 9.
    M. H. MOMENI, Nucl. Instr. Methods, 193 (1982) 185.Google Scholar
  10. 10.
    A. S. MURRAY Environmental radioactivity studies relevant to thermoluminescence dating. D. Phil, Thesis, University of Oxford, 1981.Google Scholar
  11. 11.
    A. S. MURRAY, M. J. AITKEN, The measurement and importance of radioactive disequilibria in TL samples, in: A Specialist Seminar on Thermoluminescence Dating, PACT, 6 1980, p. 155.Google Scholar
  12. 12.
    A. R. SMITH, H. A. WOLLENBERG, High resolution gamma-ray spectrometry for the laboratory analysis of the uranium and thorium decay series, in: The Natural Radiation Environment II, J. A. S. ADAMS, W. M. LOWDER, T. F. GESSELL, (Eds), CONF-720805, Washington, D. C., 1972.Google Scholar
  13. 13.
    N. A. WOGMAN, Natural contamination in radionuclides detection system IEEE Trans. Nucl. Sci., (1981) 275.Google Scholar
  14. 14.
    W. H. ZIMMER, S. E. WAGNER, Nucl. Instr. Methods, 223 (1984) 412.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • A. S. Murray
    • 1
  • R. Marten
    • 1
  • A. Johnston
    • 1
  • P. Martin
    • 1
  1. 1.Alligator Rivers Region Research InstituteJabiru(Australia)

Personalised recommendations