Journal of Chemical Ecology

, Volume 21, Issue 4, pp 439–453 | Cite as

Metabolism of 1,8-cineole in tea tree (Melaleuca alternifolia andM. linariifolia) by pyrgo beetle (Paropsisterna tigrina)

  • Ian A. Southwell
  • Craig D. A. Maddox
  • Myron P. Zalucki
Article

Abstract

The frass of the pyrgo beetle (Paropsisterna tigrina) feeding on commercial plantations of the terpinen-4-ol chemical variety of the Australian tea tree.Melaleuca alternifolia, was found to contain a volatile oil almost identical to the essential oil of the ingested leaf. When beetles were fed leaf containing substantial quantities of 1,8-cineole, the predominant frass metabolite as determined by MS, IR,13C and1H NMR, GC, and CoGC was (+)-2β-hydroxycineole. Both male and female adults and larvae metabolizedMelaleuca oils in similar ways.

Key Words

Coleoptera Chrysomelidae Paropsisterna tigrina pyrgo beetle Melaleuca alternifolia M. linariifolia Myrtaceae volatile oil metabolism 1,8-cineole hydroxycineole (+)-2β-hydroxycineole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asakawa, Y., Matsuda, R., Tori, M., andHashimoto, T. 1988a. Preparation of biologically active substances and animal and microbial metabolites from menthols, cineoles and kauranes.Phytochemistry 27(12):3861–3869.Google Scholar
  2. Asakawa, Y., Toyota, M., andIshida, T. 1988b. Biotransformation of 1,4-cineole, a monoterpene ether.Xenobiotica 18(10):1129–1134.PubMedGoogle Scholar
  3. Birgersson, G., Schlyter, F., Lofqvist, andBergstrom, G. 1984. Quantitative variation of pheromone components in the spruce bark beetleIps typographus from different attack phases.J. Chem. Ecol. 10(7):1029–1055.Google Scholar
  4. Bitteur, S.M., Baumes, R.L., Bayonove, C.L., Versini, G., Martin, C.A., andDalla Serra, A. 1990. 2-Exo-Hydroxy-1,8-cineole: A new component from grape var. Sauvignon.J. Agric. Food Chem. 38(5):1210–1213.Google Scholar
  5. de Boggiatto, M.V., de Heluani, C.S., de Fenik, I.J.S., andCatelan, C.A.N. 1987. Regiospecific functionalization of the monoterpene ether 1,3,3-trimethyl-2-oxabicyclo(2.2.2)octane (1,8-cineole). Synthesis of the useful bridged γ-lactone 1,3-dimethyl-2-oxabicyclo(2.2.2)octan3→5-olide.J. Org. Chem. 52(8):1505–1511.Google Scholar
  6. Brattsen, L.B., Wilkinson, C.F., andEisner, T. 1977. Herbivore plant interactions, mixed function oxidases and secondary plant substances.Science 196:1349–1352.Google Scholar
  7. Brophy, J.J., Davies, N.W., Southwell, I.A., Stiff, I.A., andWilliams, L.R. 1989. Gas chromatographic quality control for oil ofMelaleuca terpinen-4-ol type (Australian tea tree).J. Agric. Food Chem. 37(5):1330–1335.Google Scholar
  8. Bull, S.D., Carman, R.M., Carrick, F.N., andKlika, K.D. 1993. 7-Hydroxy-1,8-cineole and 7-cineolic acid. Two new possum urinary metabolites.Aust. J. Chem. 46(4): 441–447.Google Scholar
  9. Byers, J.A., Wood, D.L., Browne, L.E., Fish, R.H., Paitek, B., andHendry, L.B. 1979. Relationship between a host plant compound, myrcene and pheromone production in the bark beetle,Ips paraconfusus-Pinus ponderosa.J. Insect Physiol. 25(6):477–482.Google Scholar
  10. Byers, J.A., Wood, D.L., Craig, J., andHendry, L.B. 1984. Attractive and inhibitory pheromones produced in the bark beetle,Dendroctonus brevicomis during host colonisation: regulation of inter- and intraspecific competition.J. Chem. Ecol. 10(6): 861–877.Google Scholar
  11. Carman, R.M., andFletcher, M.T. 1984. The isomeric 1,3,3-trimethyl-2-oxabicyclo(2.2.2)octan-6-ols (2-hydroxy-1,8-cineoles).Aust. J. Chem. 37(5):1117–1122.Google Scholar
  12. Carman, R.M., andKlika, K.D. 1992. Partially racemic compounds as brushtail possum urinary metabolites.Aust. J. Chem. 45(4):651–657.Google Scholar
  13. Carman, R.M., MacRae, I.C., andPerkins, M.V. 1986. The oxidation of 1,8-cineole byPseudomonas flava.Aust. J. Chem. 39(11): 1739–1746.Google Scholar
  14. Carman, R.M., Garner, A.C., andKlika, K.D. 1994. 2,9-Dihydroxy and 2,10-dihydroxy-1,8-cineole. Two new possum urinary metabolites.Aust. J. Chem. 47:1509–1521.Google Scholar
  15. Colton, R.T., andMurtagh, G.J. 1990. Tea tree oil-plantation production.NSW Agriculture, Agfact P6.4.6:1–24.Google Scholar
  16. Edwards, P.B., Wanjara, W.J., Brown, W.V., andDearn, J.M. 1990. Mosaic resistance in plants.Nature 347:434.Google Scholar
  17. Edwards, P.B., Wanjara, W.J., andBrown, W.V. 1993. Selective herbivory by Christmas beetles in response to intraspecific variation in Eucalyptus terpenoids.Oecologia 95:551–557.Google Scholar
  18. Flynn, T.M., andSouthwell, I.A., 1979. 1,3-Dimethyl-2-oxabicyclo[2,2,2] octane-3-methanol and 1,3-dimethyl-2 oxabicyclo[2,2,2] octane-3-carboxylic acid, urinary metabolites of 1,8-cineole.Aust. J. Chem. 32:2093–2095.Google Scholar
  19. Fox, L.R., andMacauley, B.J. 1977. Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen.Oecologia 29:145–162.Google Scholar
  20. Fox, L.R., andMorrow, P.A. 1983. Estimates of damage by insect grazing on Eucalyptus trees.Aust. J. Ecol. 8:139–147.Google Scholar
  21. Gandini, A., Bondavalli, F., Schenone, P., andBignardi, G. 1972. Stereochemistry of 1,8-cineole derivatives—II.2—cineolylols.Ann. Chim. 62:188–199.Google Scholar
  22. Harborne, J.B. 1988. Introduction to Ecological Biochemistry. Academic Press. London, pp. 138–143.Google Scholar
  23. International Standards Organisation. 1992. Oil ofMelaleuca, terpinen-4-ol type. Draft Standard ISO/DIS 4730E, Lisbon.Google Scholar
  24. Liu, W.-G., andRosazza, J.P.N. 1990. Stereospecific hydroxylation of 1,8-cineole using a microbial biocatalyst.Tetrahedron Lett. 31(20):2833–2836.Google Scholar
  25. Liu, W.-G., Goswami, A., Steffek, R.P., Chapman, R.L., Sariaslani, F.S., Steffens, J.J., andRosazza, J.P.N. 1988. Stereochemistry of microbiological hydroxylations of 1,4-cineole.J. Org. Chem. 53(19):5700–5704.Google Scholar
  26. MacRae, I.C., Alberts, V., Carman, R.M., andShaw, I.M. 1979. Products of 1,8-cineole oxidation by a pseudomonad.Aust. J. Chem. 32:917–922.Google Scholar
  27. Maddox, C.D. 1995. Aspects of the biology ofParopsisterna tigrina. MSc thesis. University of Queensland, Brisbane.Google Scholar
  28. Madyastha, K.M., andChadha, A. 1986. Metabolism of 1,8-cineole in rat: Its effects on liver and lung microsomal cytochrome P-450 systems.Bull. Environ. Contam. Toxicol. 37:759–766.PubMedGoogle Scholar
  29. Merry, G. 1991. Tea tree industry productionlevels, pp. 26–29,in G.J. Murtagh (ed.). Reports: Tea Tree Marketing and Planning Conference, Ballina, October 31–November 2, 1991, NSW Agriculture, Wollongbar.Google Scholar
  30. Miyazawa, M., Kameoka, H. Morinaga, K. Negoro, K., andMura, N. 1989. Hydroxycineole: Four new metabolites of 1,8-cineole in rabbits.J. Agric. Food Chem. 37(1):222–226.Google Scholar
  31. Miyazawa, M., Nakaoka, H., Hyakamachi, M., andKameoka, H. 1991a. Biotransformation of 1,8-cineole to (+)-2-endo-hydroxy-1,8-cineole byGlomerella cinqulata.Chem. Express 6(9):667–670.Google Scholar
  32. Miyazawa, M., Noma, Y., Yamamoto, K., andKameoka, H. 1991b. Biotransformation of 1,4-cineole to 2-endo-hydroxy-1,4-cineole byAspergillus niger.Chem. Express 6(10):771–774.Google Scholar
  33. Miyazawa, M., Noma, Y., Yamamoto, K., andKameoka, H., 1992a. Biotransformation of 1,4-cineole to 3-endo-hydroxy-1,4-cineole byAspergillus niger.Chem. Express 7(2):125–128.Google Scholar
  34. Miyazawa, M., Noma, Y., Yamamoto, K., andKameoka, H. 1992b. Biohydroxylation of 1,4-cineole to 9-hydroxy-1,4-cineole byAspergillus niger.Chem. Express 7(4):305–308.Google Scholar
  35. Miyazawa, M., Noma, Y., Yamamoto, K., andKameoka, H. 1992c. Biohydroxylation of 1,4-cineole to 8-hydroxy-1,4-cineole byAspergillus niger.Chem. Express 7(9):721–724.Google Scholar
  36. Morrow, P.A., andFox, L.R. 1980. Effects of variation in Eucalyptus oil yield on insect growth and grazing damage.Oecologia 45:209–219.Google Scholar
  37. Morrow, P.A., Bellas, T.E., andEisner, T. 1976. Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae).Oecologia 24:193–206.Google Scholar
  38. Nishimura, H. Noma, Y., andMizutani, J. 1982.Eucalyptus as biomass. Novel compounds from microbial conversion of 1,8-cineole.Agric. Biol. Chem. 46(10); 2601–2604.Google Scholar
  39. Ohmart, C.P., andEdwards, P.B. 1991. Insect herbivory on Eucalyptus.Annu. Rev. Entomol. 36:637–657.Google Scholar
  40. Ohmart, C.P., andLarsson, S. 1989. Evidence for absorption of Eucalyptus essential oils byParopsis atomaria Oliver (Coleoptera: Chrysomelidae).J. Aust. Entomol. Soc. 28:201–205.Google Scholar
  41. Orihara, Y., andFuruya, T. 1994. Biotransformation of 1,8-cineole by cultured cells ofEucalyptus perriniana.Phytochemistry 35(3):641–644.Google Scholar
  42. Pierce, H.D., Conn, J.E., Oehleschlager, A.C., andBorden, J.H. 1987. Monoterpene metabolism in female mountain pine beetles,Dentroctonus ponderosae Hopkins, attacking ponderosa pine.J. Chem. Ecol. 13:1455–1480.Google Scholar
  43. Reid, C.A.M., andOhmart, C.P. 1989. Determination of the sex of pupae ofParopsis atomaria Oliver, and related Paropsina (Coleoptera: Chrysomelidae).J. Aust. Entomol. Soc. 28:29–30.Google Scholar
  44. Southwell, I.A., 1988. Australian tea tree oil: Oil ofMelaleuca, terpinen-4-ol type.Chem. Aust. 55(11):400–402.Google Scholar
  45. Southwell, I.A., andStiff, I.A. 1989. Ontogenetical changes in monoterpenoids ofMelaleuca alternifolia leaf.Phytochemistry 28(4):1047–1051.Google Scholar
  46. Southwell, I.A., andStiff, I.A. 1990. Differentiation betweenMelaleuca alternifolia andM. linariifolia by monoterpenoid comparison.Phytochemistry 29(11):3529–3533.Google Scholar
  47. Southwell, I.A., Flynn, T.M., andDegabriele, R., 1980. Metabolism of α- and β-pinene,p-cymene and 1,8-cineole in the brushtail possum,Trichosurus vulpecula.Xenobiotica 10(1):17–23.PubMedGoogle Scholar
  48. Southwell, I.A., Stiff, I.A., andBrophy, J.J. 1992. Terpinolene varieties ofMelaleuca.J. Essent. Oil Res. 4(4):363–367.Google Scholar
  49. Standards Association of Australia. 1985. Essential oils—oil ofMelaleuca, terpinen-4-ol type. 2782–1985 Standards Australia, Sydney.Google Scholar
  50. Stone, C., andBacon, P.E. 1994. Relationships among moisture stress, insect herbivory, foliar cineole content and the growth of river red gum (Eucalyptus camaldulensis).J. Appl. Ecol. Submitted.Google Scholar
  51. Williams, D.R., Trudgill, P.W., andTaylor, D.G. 1989. Metabolism of 1,8-cineole by aRhodococcus species: Ring cleavage reactions.J. Gen. Microbiol. 135:1957–1967.Google Scholar
  52. Wood, D.L. 1982. The role of pheromones, kairomones and allomones in the host selection and colonization behaviour of bark beetles.Annu. Rev. Entomol. 27:411–466.Google Scholar
  53. Yu, S.J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsia gemmatalis) insects.J. Chem. Ecol. 13(3):423–436.Google Scholar
  54. Yu, S.J., Berry, R.E., andTerriere, L.C. 1979. Host plant stimulation of detoxifying enzymes in a phytophagous insect.Pestic. Biochem. Physiol. 12:280–284.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Ian A. Southwell
    • 1
  • Craig D. A. Maddox
    • 1
  • Myron P. Zalucki
    • 2
  1. 1.Wollongbar Agricultural InstituteWollongbarAustralia
  2. 2.Department of EntomologyUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations