Advertisement

Journal of Chemical Ecology

, Volume 21, Issue 4, pp 427–438 | Cite as

A critical body size for use of pheromones in mate location

  • David B. Dusenbery
  • Terry W. Snell
Article

Abstract

Pheromones have demonstrated importance in mate location in many insect species. Because chemoreception is the most universal sense, it has been assumed that pheromones also are important in aquatic organisms, including bacteria, but few have been found. The physical limits on effective strategies for organisms to come into contact for mating were modeled with assumptions appropriate for organisms less than a millimeter in size in an open aquatic environment. One sex was assumed to be motile, while the other sex was passive or devoted energy to locomotion or to diffusible pheromone production. Assuming spherical organisms, random locomotion by the second sex at the same velocity as the first sex increases the chances of contact by a factor of 4/3 over being passive; this ratio is independent of size. For detection by contact, the effectiveness of searching increases with the third power of the radius of the organisms; for detection by pheromones, search effectiveness increases with the seventh power of the radius above a critical size. Diverting energy from motility to pheromone production is not productive for organisms smaller than the critical size, which corresponds to a radius of 1.8 times the square root of the diffusion coefficient of the pheromone times the threshold concentration for detection divided by the rate of pheromone production per unit volume of organism. Thus, pheromone production is very favorable for organisms much above the critical size, which appears to be between 0.2 and 5 mm in water. On the other hand, bacteria are probably too small to use diffusable pheromones for mate location; most protozoans and rotifers may also be too small.

Key Words

Attraction bacteria chemoreception crustacean efficiency mate location pheromone plankton protozoan rotifer sex size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J. 1975. Chemotaxis in bacteria.Annu. Rev. Biochem. 44:341–356.PubMedGoogle Scholar
  2. Aloia, R.C., andMoretti, R.L. 1973. Mating behavior and the ultrastructure of copulation in the rotiferAsplanchna brightwelli.Trans. Am. Microsc. Soc. 90:371–380.Google Scholar
  3. Altman, P.L. andDittmer, D.S. 1974. Biology Data Book. Federation of American Societies for Experimental Biology, Bethesda, Maryland.Google Scholar
  4. Ameyaw-Akumfi, C., andHazlett, B.A. 1975. Sex recognition in the crayfishProcambarus clarkii.Science 190:1225–1226.PubMedGoogle Scholar
  5. Atema, J., andEngstrom, D.G. 1971. Sex pheromone in the lobster,Homarus americanus.Nature 232:261–263.PubMedGoogle Scholar
  6. Atema, J., Fay, R.R., Popper, A.N., andTavolga, W.N. 1988. Sensory Biology of Aquatic Animals. Springer-Verlag, New York.Google Scholar
  7. Berg, H.C. 1983. Random Walks in Biology. Princeton University Press, Princeton, New Jersey.Google Scholar
  8. Blades, P.I. 1977. Mating behavior ofCentropages typicus.Mar. Biol. 40:47–64.Google Scholar
  9. Blades, P.I., andYoungbluth, M.J. 1979. Mating behavior ofLabidocera aestiva (Copepoda: Calanoida).Mar. Biol. 51:339–355.Google Scholar
  10. Blades, P.I., andYoungbluth, M.J. 1980. Morphological, physiological and behavioral aspects of mating in calanoid copepods, pp. 39–51,in W.C. Kerfoot (ed.). Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire.Google Scholar
  11. Boland, W., Jaenicke, L., Müller, D.G., andPeters, A. 1984. Differentiation of algal chemoreceptors.Eur. J. Biochem. 144:169–176.PubMedGoogle Scholar
  12. Borowsky, B., Augelli, C.E., andWilson, S.R. 1987. Towards chemical characterization of waterborne pheromone of amphipod crustacean,Microdeutopus gryllotalpa.J. Chem. Ecol. 13:1673–1680.Google Scholar
  13. Burton, R.S. 1985. Mating system of the intertidal copepodTigriopus californicus.Mar. Biol. 86:247–252.Google Scholar
  14. Carr, W.E.S. 1988. The molecular nature of chemical stimuli in the aquatic environment, pp. 3–27,in J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga (eds.). Sensory Biology of Aquatic Animals. Springer-Verlag, New York.Google Scholar
  15. Chow-Fraser, P., andMaly, E.J. 1988. Aspects of mating, reproduction, and co-occurrence in three freshwater calanoid copepods.Freshwater Biol. 19:95–108.Google Scholar
  16. Crawford, D.W. 1992. Metabolic cost of motility in planktonic protists: Theoretical considerations on size scaling and swimming speed.Microb. Ecol. 24:1–10.Google Scholar
  17. Crease, T.J., andHebert, P.D.N. 1983. A test for the production of sexual pheromones byDaphnia magna (Crustacea: Cladocera).Freshwater Biol. 13:491–496.Google Scholar
  18. Devreotes, P. 1989.Dictyostelium discoideum: A model system for cell-cell interactions in development.Science 245:1054–1058.PubMedGoogle Scholar
  19. Dunham, P.J. 1988. Pheromones and behavior in Crustacea, pp. 375–392,in H. Lauffer and R.G.H. Downer (eds.). Endocrinology of Selected Invertebrate Types. Alan R. Liss, New York.Google Scholar
  20. Dusenbery, D.B. 1992. Sensory Ecology, W.H. Freeman, New York.Google Scholar
  21. Dworkin, M. 1992. Prokaryotic diversity, pp. 48–74in A. Balows, Trüper, H.G., Dworkin, M., Harder W., and Schleifer, K.-H. (eds.). The Prokaryotes, 2nd ed., Vol. I. Springer-Verlag, New York.Google Scholar
  22. Epp, R.W. andLewis, W.M., Jr. 1979. Sexual dimorphism inBrachionus plicatilis (Rotifera): Evolutionary and adaptive significance.Evolution 33:919–928.Google Scholar
  23. Fenchel, T., andFinlay, B.J. 1983. Respiration rates in heterotrophic, free-living protozoa.Microb. Ecol. 9:99–122.Google Scholar
  24. Gerritsen, J. 1980. Sex and parthenogenesis in sparse populations.Am. Nat. 115:718–742.Google Scholar
  25. Gerritsen, J., andStrickler, J.R. 1977. Encounter probabilities and community structure in zooplankton: A mathematical model.J. Fish. Res. Board Can. 34:73–82.Google Scholar
  26. Gilbert, J.J. 1963. Contact chemoreception, mating behavior, and sexual isolation in the rotifer genusBrachionus.J. Exp. Biol. 40:625–641.Google Scholar
  27. Gleeson, R.A., Adams, M.A., andSmith, A.B., III 1984. Characterization of a sex pheromone in the blue crab,Callinectes sapidus: Crustecdysone studies.J. Chem. Ecol. 10:913–921.Google Scholar
  28. Goldstein, S.F. 1992. Flagellar beat patterns in algae. pp. 99–153,in M. Melkonian (ed.). Algal Cell Motility. Chapman and Hall, New York.Google Scholar
  29. Griffiths, A.M., andFrost, B.W. 1976. Chemical communication in the marine planktonic copepodsCalanus pacificus andPseudocalanus sp.Crustaceana 30:1–8.Google Scholar
  30. Haq, S.M. 1972. Breeding ofEuterpina acutiforns, a harpacticoid copepod, with special reference to dimorphic males.Mar. Biol. 15:221–235.Google Scholar
  31. Hara, T.J. 1993. Chemoreception, pp. 191–218,in D.H. Evans (ed.). Physiology of Fishes. CRC Press, Boca Raton, Florida.Google Scholar
  32. Honda H., andMiyake, A. 1975. Taxis to a conjugation-inducing substance in the ciliateBlepharisma.Nature 257:678–680.PubMedGoogle Scholar
  33. Jacobs, J. 1961. Laboratory cultivation of the marine copepodPseudodiaptomus coronatus Williams.Limnol. Oceanogr. 6:443–446.Google Scholar
  34. Jacoby, C.A., andYoungbluth, M.J. 1983. Mating behavior in three species ofPseudodiaptomus (Copepoda: Calanoida).Mar. Biol. 76:77–86.Google Scholar
  35. Katona, S.A. 1973. Evidence for sex pheromones in planktonic copepods.Limnol. Oceanogr. 81:574–583.Google Scholar
  36. Kauzmann, W. 1966. Kinetic Theory of Gases. W.A. Benjamin, New York.Google Scholar
  37. Kochert, G. 1978. Sexual pheromones in algae and fungi.Annu. Rev. Plant Physiol. 29:461–486.Google Scholar
  38. Lazzaretto, I., Salvato, B., andLibertini, A. 1990. Evidence of chemical signalling inTrigriopus fulvus (Copepoda, Harpacticoida).Crustaceana 59:171–179.Google Scholar
  39. Luporini, P., andMiceli, C. 1986. Mating Pheromones, pp. 263–299,in J.G. Gall (ed.). The Molecular Biology of Ciliated Protozoa. Academic Press, New York.Google Scholar
  40. Maier, I., andMüller, D.G. 1986. Sexual pheromones in algae.Biol. Bull. 170:145–175.Google Scholar
  41. McLeese, D.W. 1970. Detection of dissolved substances by the American lobster (Homarus americanus) and olfactory attraction between lobsters.J. Fish. Res. Board Can. 27:1371–1378.Google Scholar
  42. Meister, M., Lowe, G., andBerg, H.C. 1987. The proton flux through the bacterial flagellar motor.Cell 49:643–650.PubMedGoogle Scholar
  43. Miyake, A. 1981. Cell interaction by gamones inBlepharisma, pp. 95–129,in D.H. O'Day and P.A. Horgen (eds.). Sexual Interactions in Eukaryotic Microbes. Academic Press, New York.Google Scholar
  44. Pommerville, J. 1981. The role of sexual pheromones inAllomyces, pp. 53–72,in D.H. O'Day and P.A. Horgen (eds.). Sexual Interactions in Eukaryotic Microbes. Academic Press, New York.Google Scholar
  45. Purcell, E.M. 1977. Life at low Reynolds number.Am. J. Phys. 45:3–11.Google Scholar
  46. Raper, K.B. 1935.Dictyostelium discoideum: A new species of slime mold from decaying forest leaves.J. Agric. Res. 50:135–147.Google Scholar
  47. Raper, J.R. 1970. Chemical ecology among lower plants, pp. 21–42,in E. Sondheimer and J.B. Simeone (eds.). Chemical Ecology. Academic Press, New York.Google Scholar
  48. Rouse, H. 1961. Fluid Mechanics for Hydraulic Engineers. Dover Publications, New York.Google Scholar
  49. Ryan, E.P. 1966. Pheromone: Evidence in a decapod crustacean.Science 151:340–341.PubMedGoogle Scholar
  50. Snell, T.W., andGarman, B.L. 1986. Encounter probabilities between male and female rotifers.J. Exp. Mar. Biol. Ecol. 97:221–230.Google Scholar
  51. Snell, T.W., andHawkinson, C.A. 1983. Behavioral reproductive isolation among populations of the rotiferBrachionus plicatilis.Evolution 37:1294–1305.Google Scholar
  52. Snell, T.W., andNacionales, M.A. 1990. Sex pheromone communication inBrachionus plicatilis (Rotifera).Comp. Biochem. Physiol. 97A:211–216.Google Scholar
  53. Soll, D.R. 1988. “DMS,” a computer-assisted system for quantitating motility, the dynamics of cytoplasmic flow, and pseudopod formation: Its application toDictyostelium chemotaxis.Cell Motil. Cytoskeleton 10:91–106.PubMedGoogle Scholar
  54. Stanhope, M.J., Connelly, M.M., andHartwick, B. 1992. Evolution of a crustacean chemical communication channel: Behavioral and ecological genetic evidence for a habitat-modified, race-specific pheromone.J. Chem. Ecol. 18:1871–1887.Google Scholar
  55. Stephens, K. 1986. Pheromones among the procaryotes.Crit. Rev. Microbiol. 13:309–334.PubMedGoogle Scholar
  56. Tanford, C. 1961. Physical Chemistry of Macromolecules. John Wiley & Sons, New York.Google Scholar
  57. Uchima, M., andMurano, M. 1988. Mating behavior of the marine copepodOithona davisae.Mar. Biol. 99:39–45.Google Scholar
  58. Vlymen, W. 1970. Energy of expenditure of swimming copepods.Limnol. Oceanogr. 15:348–356.Google Scholar
  59. Vogel, S. 1981. Life in Moving Fluids. Princeton University Press, Princeton, New Jersey.Google Scholar
  60. Watras, C.J. 1983. Mate location by diaptomid copepods.J. Plank. Res. 5:417–425.Google Scholar
  61. Weast, R.C. 1970. CRC Handbook of Chemistry and Physics. The Chemical Rubber Co., Cleveland, Ohio.Google Scholar
  62. Weast, R.C. 1985. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • David B. Dusenbery
    • 1
  • Terry W. Snell
    • 1
  1. 1.School of BiologyGeorgia Institute of TechnologyAtlanta

Personalised recommendations