Advertisement

Journal of Chemical Ecology

, Volume 21, Issue 3, pp 365–378 | Cite as

Hydrocarbon dynamics within and between nestmates inCataglyphis niger (Hymenoptera: Formicidae)

  • Victoria Soroker
  • Catherine Vienne
  • Abraham Hefetz
Article

Abstract

The objective of the present study was to evaluate the interrelationship between the cuticular and postpharyngeal glands' hydrocarbons, both in the individual ant and during its interaction with nestmates. In vivo radiochemical assays were employed to monitor the de novo hydrocarbon biosynthesis from acetate in the ant's body. The newly synthesized hydrocarbons appeared first internally and after 24 hr they accumulated in the postpharyngeal gland and on the cuticular surface. Blocking the possibility of external transfer of hydrocarbons between cuticle and postpharyngeal gland led to a significant decrease of labeled hydrocarbons in the postpharyngeal gland. In addition, during encounters between labeled and unlabeled ants, newly synthesized hydrocarbons were transferred, mainly via trophallaxis, but also by allo-grooming and physical contact. In view of these results, we propose as a model for their dynamics that hydrocarbons are synthesized in tissues associated with the integument. Through self-grooming, there is a constant exchange of hydrocarbons between the cuticular surface and the postpharyngeal gland. Furthermore, in encounters between nestmates, hydrocarbons are exchanged among them mostly by trophallaxis, with the mediation of the postpharyngeal gland. Thus, this gland acts as a pool for mixing colonial hydrocarbons and may serve to attain a unified colony odor.

Key Words

Postpharyngeal glands cuticle hydrocarbons nestmates recognition ants Cataglyphis niger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnères, A.-G., andMorgan, E.D. 1991. The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons.Experientia 47:106–111.Google Scholar
  2. Bagnères, A.-G., Errard, C., Mulheim, C., Joulie, C., andLange, C. 1991. Induced mimiery of colony odors in ants.J. Chem. Ecol. 17:1641–1664.Google Scholar
  3. Barbier, M., andDelage, B. 1967. Le contenu des glandes pharyngiennes de la fourmiMessor capitatus Latr. (Insecte, Hyménoptère Formicidé).C.R. Acad. Sci. 264:1520–1522.Google Scholar
  4. Blum, M.S. 1987. The basis and evolutionary significance of recognitive olfactory acuity in insect societies, pp. 277–293,in J.M. Pasteels and J.-L. Deneubourg (eds.). From Individual to Collective Behavior in Social Insects (Experientia supplement), Birkhauser Verlag, Basel.Google Scholar
  5. Bonavita-Cougourdan, A., Clément, J.-L., andLange, C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the antCamponotus vagus Scop.J. Entomol. Sci. 22:1–10.Google Scholar
  6. Bonavita-Cougourdan, A., Clément, J.-L., andLange, C. 1989. The role of cuticular hydrocarbons in recognition of larvae by workers of the antCamponotus vagus: Changes in the chemical signature in response to social environment (Hymenoptera: Formicidae).Sociobiology 16:49–74.Google Scholar
  7. Bradshaw, J.W.S., andHowse, P.E. 1984. Sociochemicals of ants, pp. 429–473,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman & Hall, London.Google Scholar
  8. Breed, M.D., andBennett, B. 1987. Kin recognition in highly eusocial insects, pp. 243–285,in D.J.C. Fletcher and C.D. Michener (eds.). Kin recognition in animals. John Wiley, New York.Google Scholar
  9. Breed, M.D., Snyder, L.E., Lynn, T.L., andMorhart, J.A. 1992. Acquired chemical camouflage in a tropical ant.Anim. Behav. 44:519–523.Google Scholar
  10. Brill, J.H., Mar, T., Mayfield, H.T., andBertsch, W. 1985. Use of computerized pattern recognition in the study of the cuticular hydrocarbons of imported fire ants. II. Comparison of the cuticular hydrocarbon patterns between different colonies ofSolenopsis richteri.J. Chromatogr. 349:39–48.PubMedGoogle Scholar
  11. Crozier, R.H. 1987. Genetic aspects of kin recognition: concepts, models, and synthesis, pp. 55–73,in D.J.C. Fletcher and C.D. Michener (eds.). Kin Recognition in Animals. John Wiley, New York.Google Scholar
  12. Crozier, R.H., andDix, M.W. 1979. Analysis of two genetic models for the innate components of colony odour in social Hymenoptera.Behav. Ecol. Sociobiol. 4:217–224.Google Scholar
  13. Crosland, M.W.J. 1989. Kin recognition in the antRhytidoponera confusa. II. Gestalt odour.Anim. Behav. 37:920–926.Google Scholar
  14. De Renobales, M., Nelson, D.R., Mackay, M.E., Zamboni, A.C., andBlomquist, G.J. 1988. Dynamics of hydrocarbon biosynthesis and transport to the cuticle during pupal and early adult development in the cabbage looperTichoplusia ni (Lepidoptera: Noctuidae).Insect Biochem. 18:607–613.Google Scholar
  15. De Renobales, M., Nelson, D.R., andBlomquist, G.J. 1991. Cuticular lipids. pp. 240–251,in K. Binnington and A. Retnakaran (eds.). Physiology of Insect Epidermis. CSIRO, Australia.Google Scholar
  16. Dettner, K., andLiepert, C. 1994. Chemical mimicry and camouflage.Annu. Rev. Entomol. 39:129–154.Google Scholar
  17. Do Nascimento, N.R.R., Billen, J., andMorgan, E.D. 1993. The exocrine secretions of the jumping antHarpegnathos saltator.Comp. Biochem. Physiol. B Comp. Biochem. 104:505–508.Google Scholar
  18. Errard, C. 1986. Role of early experience in mixed-colony odor recognition in the antsManica rubida andFormica selysi.Ethology 72:243–249.Google Scholar
  19. Errard, C., andJallon, J.-M. 1987. An investigation of the development of the chemical factors in ants intra-society recognition, p. 478,in E. Eder and H. Rembold (eds.). Chemistry and Biology of Social Insects. Verlag J. Peperny, Munchen.Google Scholar
  20. Franks, N., Blum, M., andSmith, R.K. 1990. Behavior and chemical disguise of cuckoo antLeptothorax kutteri in relation to its hostLeptothorax acervorum.J. Chem. Ecol. 16:1431–1444.Google Scholar
  21. Gadagkar, R. 1985. Kin recognition in social insects and other animals—a review of recent findings and a consideration of their relevance for the theory of kin selection.Proc. Indian Acad. Sci. 94:587–621.Google Scholar
  22. Gordon, D.M., Paul, R.E., andThorpe, K. 1993. What is the function of encounter patterns in ant colonies?Anim. Behav. 45:1083–1100.Google Scholar
  23. Hefetz, A., Errard, C., andCojocaru, M. 1992. The occurrence of heterospecific substances in the postpharyngeal gland secretion of ants reared in mixed species colonies (Hymenoptera: Formicidae).Naturwissenschaften 79:417–420.Google Scholar
  24. Henderson, G., Andersen, J.F., andPhillips, J.K. 1990. Internest aggression and identification of possible nestmate discrimination pheromones in polygynous antFormica montana.J. Chem. Ecol. 16:2217–2228.Google Scholar
  25. Hölldobler, B., andMichener, C.D. 1980. Mechanisms of identification and discrimination in social Hymenoptera, pp. 35–58,in H. Markl (ed.). Evolution of Social Behavior: Hypotheses and Empirical Tests. Verlag Chemie, Weinheim.Google Scholar
  26. Hölldobler, B., andWilson, E.O. 1990. The Ants. Harvard University Press, Cambridge Massachusetts.Google Scholar
  27. Howard, R.W., andBlomquist, G.J. 1982. Chemical ecology and biochemistry of insect hydrocarbons.Annu. Rev. Entomol. 27:149–172.Google Scholar
  28. Katase, H., andChino, H. 1984. Transport of hydrocarbons by hemolymph lipophorin inLocusta migratoria.J. Biochem. 14:1–6.Google Scholar
  29. Korst, P.J.A.M., andVelthuis, H.H.W. 1982. The nature of trophallaxis in honeybees.Insect. Soc. 29:209–221.Google Scholar
  30. Lockey, K.H. 1988. Lipids of insect cuticle: Origin, composition and function.Comp. Biochem. Physiol. 89:595–645.Google Scholar
  31. Morel, L. 1983. Relation entre comportement agressif et privation sociale précoce chez les jeunes immatures de la fourmiCamponotus vagus Scop. (Hymenoptera: Formicidae).C.R. Acad. Sci. 296:449–452.Google Scholar
  32. Morel, L., andBlum, M.S. 1988. Nestmate recognition inCamponotus floridanus callow worker ants: Are sisters or nestmates recognized?Anim. Behav. 36:718–725.Google Scholar
  33. Morel, L., andVander Meer, R.K. 1987. Nestmate recognition inCamponotus floridanus: Behavioral and chemical evidence for the role of age and social experience, pp. 471–472,in J. Eder, H. Rembold, and J. Verlag (eds.). Chemistry and Biology of Social Insects. Peperny, Munich.Google Scholar
  34. Morel, L., Vander Meer, R.K., andLavine, B.K. 1988. Ontogeny of nestmate recognition cues in the red carpenter ant (Camponotus floridanus)—behavioral and chemical evidence for the role of age and social experience.Behav. Ecol. Sociobiol. 22:175–183.Google Scholar
  35. Nowbahari, E., Lenoir, A., Clément, J.-L., Lange, C., Bagnères, A.-G., andJoulie, C. 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the antCataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition.Biochem. System. Ecol. 18:163–173.Google Scholar
  36. Philips, S.A., andVinson, S.B. 1980. Source of the post-pharyngeal gland contents in the red imported ant,Solenopsis invicta.Ann. Entomol. Soc. Am. 73:257–261.Google Scholar
  37. Provost, E., Riviere, G., Roux, M., Morgan, D., andBagnères, A.-G. 1993. Changes in the chemical signature of the antLeptothorax lichtensteini Bondroit with time.Insect. Biochem. Mol. Biol. 23:945–957.Google Scholar
  38. Ross, K.G., Vander Meer, R.K., Fletcher, D.J.C., andVargo, E.L. 1987. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae).Evolution 41:280–293.Google Scholar
  39. Soroker, V., Vienne, C., andHefetz, A. 1994. The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the antCataglyphis niger.Naturwissenschaften. 81:510–513.Google Scholar
  40. Sokal, R.R., andRohlf, P.J. 1981. Biometry, The Principles and Practice of Statistics in Biological Research. W.H. Freeman, San Fransisco.Google Scholar
  41. Vander Meer, R.K. 1986. Chemical taxonomy as a tool for separatingSolenopsis spp., pp. 316–326,in C.S. Lofgren and R.K. Vander Meer (eds.). Fire Ants and Leaf-Cutting Ants, Biology and Management. Westview Press, Boulder, Colorado.Google Scholar
  42. Vander Meer, R.K., Saliwanchik, D., andLavine, B. 1989. Temporal changes in colony cuticular hydrocarbon patterns ofSolenopsis invicta. Implications for nestmate recognition.J. Chem. Ecol. 15:2115–2125.Google Scholar
  43. Vienne, C. 1993. Organisation sociale et reconnaissance interindividuelle dans les colonies mixtes artificielles de fourmis. PhD thesis. Paris Nord University, Villetaneuse, France.Google Scholar
  44. Vienne, C., Soroker V., andHefetz, A. 1995 Congruency of hydrocarbon pattern in heterospecific groups of ants: transfer and/or biosynthesis?Insect Soc. In press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Victoria Soroker
    • 1
  • Catherine Vienne
    • 1
    • 2
  • Abraham Hefetz
    • 1
  1. 1.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  2. 2.Laboratoire d'Ethologie Expérimentale et ComparéeUniversité Paris NordVilletaneuseFrance

Personalised recommendations