Journal of Chemical Ecology

, Volume 20, Issue 10, pp 2673–2685 | Cite as

Evidence for volatile chemical attractants in the beetleMaladera matrida argaman (Coleoptera: Scarabaeidae)

  • Gal Yarden
  • Arnon Shani


TheMaladera matrida beetle (Coleoptera, Scarabaeidae, Melolonthinae), a relatively new species to science, was first identified in Israel in 1983. In the course of field observations it was found that adultM. matrida beetles emerged from the soil at sunset to feed and mate. During the first 20 min of flight, most of the beetles were males. The females emerged shortly afterwards, and aggregations numbering 20–30 individuals with equal proportions of males and females were eventually formed on peanut plants. Laboratory olfactometer bioassays showed that peanut leaves (food) attracted both males and females. Field-trapping experiments and olfactometer studies showed thatM. matrida beetles were highly attracted by live virgin females in the presence of food (cut-up peanut leaves). Another set of field trapping experiments indicated that airborne volatiles produced by live virgin females plus food had the same attracting ability as live virgin females plus food. The attraction exerted by the combination of live virgin females and peanut leave volatiles suggests a synergism effect. Accordingly, we propose a two-stage mechanism of chemical communication in theM. matrida beetles: first, the males cause mechanical damage to the host plant to attract both sexes; later, the females emit attractants (sex pheromone) while eating or shortly thereafter.

Key Words

Maladera matrida Coleoptera Scarabaeidae collection of volatiles field trapping olfactometer attractants host plant volatiles synergism aggregation sex pheromone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argaman, Q. 1986.Maladera matrida, a new Scarabaeidae in Israel.Shapirit 4:40–46. (In Hebrew), 47–48 (English summary).Google Scholar
  2. Argaman, Q. 1990. Redescription ofMaladera matrida (Coleoptera, Scarabaeidae, Melolonthinae).Isr. J. Entomol. 24:21–27.Google Scholar
  3. Bartelt, R.J., Seaton, K.L., andDowd, P.F. 1993. Aggregation pheromone ofCarpophilus antiquus (Coleoptera: Scarabaeidae) and kairomonal use ofC. lugubris pheromone byC. antiquus.J. Chem. Ecol. 19:2203–2216.CrossRefGoogle Scholar
  4. Bestmann, H.J., andVostrowsky, O. 1988. Pheromones of the Coleoptera, pp. 95–183,in E.D. Morgan and N.B. Mandava (eds.). CRC Handbook of Natural Pesticides, Vol. 4, part A. CRC Press, Boca Raton, Florida.Google Scholar
  5. Campbell, C.A.M., Pettersson, J., Pickett, J.A., Wadhams, L.J., andWoodcock, C.M. 1993. Spring migration of Damson-hop aphid,Phorodon humuli (Homoptera, Aphididae), and summer host plant-derived semiochemicals released on feeding.J. Chem. Ecol. 19:1569–1576.CrossRefGoogle Scholar
  6. Domek, J.M., andJohnson, D.T. 1987. Evidence of a sex pheromone in the green June beetle,Cotinis nitida (L) (Coleoptera: Scarabaeidae).J. Entomol. Sci. 22:264–267.Google Scholar
  7. Domek, J.M., andJohnson, D.T. 1988. Demonstration of semiochemically induced aggregation in the green June beetle,Cotinis nitida (L) (Coleoptera: Scarabaeidae).Environm. Entomol. 17:147–149.Google Scholar
  8. Domek, J.M., Tumlinson, J.H., andJohnson, D.T. 1990. Responses of male green June beetlesContinis nitida (L) (Coleoptera: Scarabaeidae) to female volatiles in a flight tunnel.J. Insect Behav. 3:271–276.CrossRefGoogle Scholar
  9. Gaston, L.K. 1984. Techniques and equipment for collection of volatile chemicals from individual, natural, or artificial sources, pp. 217–222,in H. Hummel and T.A. Miller (eds.). Techniques in Pheromone Research. Springer-Verlag, New York.Google Scholar
  10. Gerling, D., andHefez, A. 1990. The ecology of theMaladera beetle.In R&D for Pest Management ofMaladera. Israel Ministry of Agriculture (in Hebrew).Google Scholar
  11. Golberg, A.M., Gamliel, B., Wolfovich, M., Sando, T., andAlmogi-Labin, A. 1986. Preliminary observations on the biology ofMaladera sp.Phytoparasitica 14:156–157 (abstract).Google Scholar
  12. Gol'berg, A.M., Yathom, S., Almogi-Labin, A., andFridlad-Wunder, G. 1989. Diurnal and seasonal occurrence, feeding habits and mating behavior ofMaladera matrida adults in Israel.Phytoparasitica 17:81–89.Google Scholar
  13. Golub, M.A., andWeatherston, I. 1984. Techniques for extracting and collecting sex pheromones from live insects and from artificial sources, pp. 223–286,in H. Hummel, and T.A. Miller (eds.). Techniques in Pheromone Research. Springer-Verlag, New York.Google Scholar
  14. Harari, A., Ben-Yakir, D., andRosen, D. 1994. Mechanisms of aggregation behavior inMaladera matrida Argaman (Coleoptera: Scarabaeidae).J. Chem. Ecol. 20:361–371.CrossRefGoogle Scholar
  15. Heath, R.R., andManukian, A. 1992. Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification.J. Chem. Ecol. 17:1209–1226.CrossRefGoogle Scholar
  16. Henzell, R.F., andLowe, M.D. 1970. Sex attractant of the grass grub beetle.Science 168:1005–1006.PubMedGoogle Scholar
  17. Jursik, T., Stransky, K., andUbik, K. 1990. Trapping system for trace organic volatiles. Proceedings, Conference on Insect Chemical Ecology, Tabor, Academia Prague and SPB Acad. Publ. 327–330.Google Scholar
  18. Klein, M.G., Tumlinson, J.H., Ladd, T.L., Jr., andDoolittle, R.E. 1981. Japanese beetle (Coleoptera: Scarabaeidae) response to synthetic sex attractant plus phenethyl propionate: Eugenol.J. Chem. Ecol. 7:1–7.CrossRefGoogle Scholar
  19. Klein, Z.I., andChen, C. 1983. Interception and introduction of new pests in Israel.Phytoparasitica 11:124 (abstract).Google Scholar
  20. Ladd, T.L., Klein, M.G., andTumlinson, J.H. 1981. Phenethyl propionate + eugenol + geraniol (3:7:3) and japonilure: A highly effective joint lure for Japanese beetles.J. Econ. Entomol. 74:665–667.Google Scholar
  21. Leal, W.S., Mochizuki, F., Wakamura, S., andYasuda, T. 1992. Electroantennographic detection ofAnomala cupera Hope (Coleoptera: Scarabaeidae) sex pheromone.Appl. Entomol. Zool. 27:289–291.Google Scholar
  22. Leal, W.S., Sawada, M., andHasegawa, M. 1993. The scarab bettleAnomala cupera utilizes the sex pheromone ofPopillia japonica as a minor component.J. Chem. Ecol. 19:1303–1313.CrossRefGoogle Scholar
  23. Shani, A., andLacey, M.J. 1984. Convenient method applicable to single insects for collection and measurements of blend ratios of airborne pheromones from artificial sources.J. Chem. Ecol. 10:1677–1692.CrossRefGoogle Scholar
  24. Sokal, R.R., andRohlf, F.J. 1981. Biometry. W.H. Freeman. San Francisco.Google Scholar
  25. Tamaki, Y., Sugie, H., andNoguchi, H. 1985. Methyl (Z)-5-tetradecenoate: Sex attractant pheromone of the soybean beetle,Anomala rufocupera Motschulsky (Coleoptera: Scarabaeidae).Appl. Entomol. Zool. 20:359–361.Google Scholar
  26. Tumlinson, J.H., Klein, M.G., Doolittle, R.E., Ladd, T.L., andProveaux, A.T. 1977. Identification of the female Japanese beetle sex pheromone: Inhibition of male response by an enantiomer.Science 197:789–792.Google Scholar
  27. Weissling, T.J., Giblin-Davis, R.M., andScheffrahn, R.H. 1993. Laboratory and field evidence for male-produced aggregation pheromone inRhynchophorus cruentatus (F) (Coleoptera: Scarabaeidae).J. Chem. Ecol. 19:1195–1203.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Gal Yarden
    • 1
  • Arnon Shani
    • 1
  1. 1.Department of ChemistryBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations