Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 10, pp 2523–2538 | Cite as

Sequestration of host-plant-derived flavonoids by lycaenid butterflyPolyommatus icarus

  • Birgit Wiesen
  • Elisabeth Krug
  • Konrad Fiedler
  • Victor Wray
  • Peter Proksch
Article

Abstract

Larvae of the lycaenid butterflyPolyommatus icarus were reared on inflorescences ofCoronilla varia andMedicago sativa, which are rich in flavonoids. Twelve different flavonoids (five compounds from the former and nine from the latter), including aglycones andO-glycosides of kaempferol, quercetin, and myricetin were isolated and identified by spectroscopic means. NMR and MS data for the new acylated glycoside kaempferol 3-O-6″-(3-hydroxy-3-methylglutaroyl)-β-d-glucopyranoside are reported. Comparative HPLC analysis of the respective host plants and of larvae, pupae, and imagines ofP. icarus indicated selective uptake and accumulation of kaempferol vs. quercetin and myricetin derivatives. The latter were excreted largely unchanged through the feces. Irrespective of the larval host plant kaempferol 3-O-glucoside was found as the major flavonoid in larvae, pupae, and imagines ofP. icarus, accounting for approximately 83–92% of all soluble flavonoids in adult butterflies. Within the imagines, approximately 80% of all flavonoids are stored in the wings (especially in the orange submarginal lunules), whereas the remaining 20% reside in the bodies. Feeding experiments with artificial diet demonstrated that the insects are able to form kaempferol 3-O-glucoside by glucosylation of dietary kaempferol. Possible functions of the sequestered flavonoids, especially for mate recognition ofP. icarus, are discussed.

Key Words

Polyommatus icarus Lepidoptera Lycaenidae Coronilla varia Medicago sativa Fabaceae flavonoids sequestration plant-insect interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.A., Brattsten, L.B., Mullin, C.A., andYu, S.J. 1986. Enzymes involved in the metabolism of plant allelochemicals, pp. 73–152,in L.B. Brattsten and S.A. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.Google Scholar
  2. Bernard, G.D., andRemington, C.L. 1991. Color vision inLycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology.Proc. Natl. Acad. Sci. U.S.A. 88:2783–2787.PubMedGoogle Scholar
  3. Douwes, P. 1976. Mating behavior inHeodes virgaurea with particular reference to the stimuli from the female (Lepidoptera: Lycaenidae).Entomol. Ger. 2:232–241.Google Scholar
  4. Fiedler, K. 1991. Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionidae).Bonner Zool. Monogr. 31:1–210.Google Scholar
  5. Ford, E.B. 1941. Studies on the chemistry of pigments in the Lepidoptera with reference to their bearing on systematics. 1. The anthoxanthins.Proc. R. Entomol. Soc. London Ser. A. 16:65–90.Google Scholar
  6. Hamamura, Y., Hayashiya, K., Naito, K., Matsuura, K., andNishida, J. 1962. Food selection by silkworm larvae.Nature 194:754–755.Google Scholar
  7. Harborne, J.B. 1991. Flavonoid pigments, pp. 389–429,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. 2nd. ed., Vol. 1. Academic Press, San Diego.Google Scholar
  8. Hopkins, T.L., andAhmad, S.A. 1991. Flavonoid wing pigments in grasshoppers.Experientia 47:1089–1091.CrossRefGoogle Scholar
  9. Meyer-Rochow, V.B. 1991. Differences in ultraviolet wing patterns in the New Zealand lycaenid butterfliesLycaena salustius, L. rauparaha, andL. feredayi as a likely isolating mechanism.J.R. Soc. N.Z. 21:169–177.Google Scholar
  10. Morris, S.H., andThomson, R.H. 1963. The flavonoid pigments of the marbled white butterfly (Melanargia galathea Seltz).J. Insect Physiol. 9:391–399.CrossRefGoogle Scholar
  11. Rhoades, D.F. 1977. Integrated antiherbivore, antidessicant and ultraviolet screening properties of Creosote bush resin.Biochem. Syst. Ecol. 5:281–290.CrossRefGoogle Scholar
  12. Silberglied, R.E. 1979. Communication in the ultraviolet.Annu. Rev. Ecol. Syst. 10:373–398.CrossRefGoogle Scholar
  13. Silberglied, R.E. 1984. Visual communication and sexual selection among butterflies, pp. 207–223,in R.I. Vane-Wright and P.R. Ackery (eds.). The Biology of Butterflies. Academic Press, San Diego.Google Scholar
  14. Wald, B., Galensa, R., Herrmann, K., Grotjahn, L., andWray, V. 1986. Quercetin 3-O-(6″-(3-hydroxy-3-methylglutaryl)-β-galactoside from blackberries.Phytochemistry 25:2904–2905.CrossRefGoogle Scholar
  15. Wilson, A. 1985. Flavonoid pigments of butterflies in the genusMelanargia.Phytochemistry 24:1685–1691.CrossRefGoogle Scholar
  16. Wilson, A. 1986. Flavonoid pigments in swallowtail butterflies.Phytochemistry 25:1309–1313.CrossRefGoogle Scholar
  17. Wilson, A. 1987. Flavonoid pigments in chalkhill blue (Lysandra coridon Poda) and other lycaenid butterflies.J. Chem. Ecol. 13:473–493.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Birgit Wiesen
    • 1
  • Elisabeth Krug
    • 1
  • Konrad Fiedler
    • 2
  • Victor Wray
    • 3
  • Peter Proksch
    • 1
  1. 1.Julius-von-Sachs-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany
  2. 2.Theodor-Boveri-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany
  3. 3.Gesellschaft für Biotechnologische Forschung mbHBraunschweigGermany

Personalised recommendations