Journal of Chemical Ecology

, Volume 21, Issue 10, pp 1531–1539 | Cite as

A flavonoid glucoside, phellamurin, regulates differential oviposition on a rutaceous plant,Phellodendron amurense, by two sympatric swallowtail butterflies,Papilio protenor andP. xuthus: The front line of a coevolutionary arms race?

  • Keiichi Honda
  • Nanao Hayashi


We studied the chemical basis for the differential acceptance of a rutaceous plant.Phellodendron amurense, by ovipositing females of two sympatricPapilio butterflies,P. protenor andP. xuthus, that have a very similar host range.P. amurense, on which larvae of both species perform well, was rejected byP. protenor females but was marginally accepted byP. xuthus, even though water-soluble fraction of this plant elicited significant ovipositional responses from the two species. A prenylated dihydroflavonol glucoside, 3,5,7,4′-tetrahydroxy-8-(3-methylbut-2-enyl)flavanone-7-O-β-glucoside (phellamurin), was identified as a dominant active substance that deters oviposition.P. protenor responded highly sensitively to phellamurin, whereasP. xuthus was less susceptible and was affected conspicuously only at higher concentrations than that found in living plants, thereby accounting for their differential responses toP. amurense. InP. protenor, the deterrent effect of phellamurin was considered to outweigh the activity of coexisting stimulant(s) at the concentrations actually present in the foliage, resulting in avoidance of this plant. The phellamurin content in the foliage amounted to as much as 1.8% of the fresh weight, which is far higher than the average levels of flavonoids present in other major host plants ofPapilio. The dose-response experiments demonstrated that unacceptability ofP. amurense forP. protenor was attributable largely to such a high concentration of phellamurin. These results appear to provide information on possible coevolutionary interactions between herbivores and plants and also on the potential for shifts in host affiliation.

Key Words

Oviposition deterrent Phellodendron amurense Rutaceae phellamurin dihydroflavonol glucoside papilionid butterfly Papilio protenor Papilio xuthus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baur, R., Feeny, P., andStadler, E. 1993. Oviposition stimulants for the black swallowtail butterfly: Identification of electrophysiologically active compounds in carrot volatiles.J. Chem. Ecol. 19:919–937.CrossRefGoogle Scholar
  2. Dethier, V.G. 1982. Mechanisms of host-plant recognition.Entomol. Exp. Appl. 31:49–56.Google Scholar
  3. Endo, S., andNihira, I. 1990. Larval Food of Japanese Butterflies. Group Tamamushi, Tokyo. 74 pp.Google Scholar
  4. Feeny, P., Sachdev-Gupta, K., Rosenberry, L., andCarter, M. 1988. Luteolin 7-O-(6″-O-malonyl)-β-d-glucoside andtrans-chlorogenic acid: Oviposition stimulants for the black swallowtail butterfly.Phytochemistry 27:3439–3448.CrossRefGoogle Scholar
  5. Feeny, P., Stadler, E., Ahman, I., andCarter, M. 1989. Effects of plant odor on oviposition by the black swallowtail butterfly,Papilio polyxenes (Lepidoptera: Papilionidae).J. Insect Behav. 2:803–827.CrossRefGoogle Scholar
  6. Harborne, M. 1982. The Flavonoids: Advances in Research. Chapman and Hall, New York. 744 pp.Google Scholar
  7. Honda, K. 1986. Flavanone glycosides as oviposition stimulants in a papilionid butterfly.Papilio protenor.J. Chem. Ecol. 12:1999–2010.CrossRefGoogle Scholar
  8. Honda, K. 1990. Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly,Papilio protenor. J. Chem. Ecol. 16:325–337.CrossRefGoogle Scholar
  9. Honda, K., andHayashi, N. 1995. Chemical factors in rutaceous plants regulating host selection by two swallowtail butterflies,Papilio protenor andP. xuthus (Lepidoptera: Papilionidae).Appl. Entomol. Zool. 30:327–334.Google Scholar
  10. Huang, X., Renwick, J.A.A., andSachdev-Gupta, K. 1993. A chemical basis for differential acceptance ofErysimum cheiranthoides by twoPieris species.J. Chem. Ecol. 19:195–210.CrossRefGoogle Scholar
  11. Miller, J.R., andStrickler, K.L. 1984. Finding and accepting host plants, pp. 127–157,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, New York.Google Scholar
  12. Nishida, R. 1994. Oviposition stimulant of a zeryntiine swallowtail butterfly,Luehdorfia japonica. Phytochemistry 36:873–877.Google Scholar
  13. Nishida, R., andFukami, H. 1989. Oviposition stimulants of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous.J. Chem. Ecol. 15:2565–2575.CrossRefGoogle Scholar
  14. Nishida, R., Ohsugi, T., Kokubo, S., andFukami, H. 1987. Oviposition stimulants of aCitrus-feeding swallowtail butterfly,Papilio xuthus L.Experientia 43:342–344.CrossRefGoogle Scholar
  15. Nishida, R., Ohsugi, T., Fukami, H., andNakajima, S. 1990. Oviposition deterrent of a Rutaceae-feeding swallowtail butterfly,Papilio xuthus, from a non-host rutaceous plant,Orixa japonica.Agric. Biol. Chem. 54:1265–1270.Google Scholar
  16. Ohsugi, T., Nishida, R., andFukami, H. 1985. Oviposition stimulants ofPapilio xuthus, aCitrus-feeding swallowtail butterfly.Agric. Biol. Chem. 49:1897–1900.Google Scholar
  17. Ohsugi, T., Nishida, R., andFukami, H. 1991. Multi-component system of oviposition stimulants for a Rutaceae-feeding swallowtail butterfly,Papilio xuthus (Lepidoptera: Papilionidae).Appl. Entomol. Zool. 26:29–40.Google Scholar
  18. Papaj, D.R., Feeny, P., Sachdev-Gupta, K., andRosenberry, L. 1992.d-(+)-pinitol, an oviposition stimulant for the pipevine swallowtail butterfly,Battus philenor.J. Chem. Ecol. 18:799–815.CrossRefGoogle Scholar
  19. Sachdev-Gupta, K., Renwick, J.A.A., andRadke, C.D. 1990. Isolation and identification of oviposition deterrents to cabbage butterfly,Pieris rapae, fromErysimum cheiranthoides.J. Chem. Ecol. 16:1059–1067.CrossRefGoogle Scholar
  20. Sachdev-Gupta, K., Feeny, P.P., andCarter, M. 1993a. Oviposition stimulants for the pipevine swallowtail butterfly,Battus philenor (Papilionidae), from anAristolochia host plant: Synergism between inositols, aristolochic acids and a monogalactosyl diglyceride.Chemoecology 4:19–28.CrossRefGoogle Scholar
  21. Sachdev-Gupta, K., Radke, C.D., Renwick, J.A.A., andDimock, M.B. 1993b. Cardenolides fromErysimum cheiranthoides: Feeding deterrents toPieris rapae larvae.J. Chem. Ecol. 19:1355–1369.CrossRefGoogle Scholar
  22. Sakai, S., andHasegawa, M. 1974. Structure of phellamurin.Phytochemistry 13:303–304.CrossRefGoogle Scholar
  23. Shirataki, Y., Yokoe, I., Endo, M., andKomatsu, M. 1985. Determination of C-6 or C-8 substituted flavanone using13C-1H long range coupling and the revised structures of some flavanones.Chem. Pharm. Bull. 33:444–447.Google Scholar
  24. Thompson, J.N., andPellmyr, O. 1991. Evolution of oviposition behavior and host preference in Lepidoptera.Annu. Rev. Entomol. 36:65–89.CrossRefGoogle Scholar
  25. Thompson, J.N., Wehling, W., andPodolsky, R. 1990. Evolutionary genetics of host use in swallowtail butterflies.Nature 344:148–150.CrossRefGoogle Scholar
  26. Wiklund, C. 1975. The evolutionary relationship between adult oviposition preference and larval host plant range inPapilio machaon L.Oecologia 18:185–197.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Keiichi Honda
    • 1
  • Nanao Hayashi
    • 1
  1. 1.Study of Environmental Sciences Faculty of Integrated Arts and SciencesHiroshima UniversityHigashihiroshimaJapan

Personalised recommendations