Journal of Chemical Ecology

, Volume 21, Issue 10, pp 1421–1446

Variation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth ofEpirrita autumnata larvae

  • Janne Suomela
  • Vladimir Ossipov
  • Erkki Haukioja
Article

Abstract

Leaf quality of the mountain birch (Betula pubescens ssp.tortuosa) for herbivores was studied at several hierarchical levels: among trees, among ramets within trees, among branches within ramets, and among short shoots within branches. The experimental units at each level were chosen randomly. The indices of leaf quality were the growth rate of the larvae of a geometrid,Epirrita autumnata, and certain biochemical traits of the leaves (total phenolics and individual phenolic compounds, total carbohydrates and individual sugars, free and protein-bound amino acids). We also discuss relationships between larval growth rate and biochemical foliage traits. Larval growth rates during two successive years correlated positively at the level of tree, the ramet, and the branch, indicating that the relationships in leaf quality remained constant between seasons both among and within trees. The distribution of variation at different hierarchical levels depended on the trait in question. In the case of larval growth rate, ramets and short shoots accounted for most of the explained variation. In the case of biochemical compounds, trees accounted for most of the variance in the content of total phenolics and individual low-molecular-weight phenolics. In the content of carbohydrates (total carbohydrates, starch, fructose, glucose, and sucrose) and amino acids, variation among branches was generally larger than variation among trees. Variation among ramets was low for most compounds. No single leaf trait played a paramount role in larval growth. Secondary compounds, represented by phenolic compounds, or primary metabolites, particularly sugars, may both be important in determining the suitability of birch leaves for larvae. If phenols are causally more important, genet-specific analyses of foliage chemistry are needed. If sugars are of primary importance, within-genet sampling and analysis of foliage chemistry are necessary.

Key Words

Amino acids Betula pubescens ssp.tortuosa carbohydrates Epirrita autumnata larval growth leaf biochemical traits phenolics sugars within-tree variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliende, M.C. 1989. Demographic studies of a dioecious tree. II. The distribution of leaf predation within and between trees.J. Ecol. 77:1048–1058.Google Scholar
  2. Antolin, M.F., andStrobeck, C. 1985. The population genetics of somatic mutation in plants.Am. Nat. 126:52–62.CrossRefGoogle Scholar
  3. Ayres, M.P., andMaclean, S.F., Jr. 1987. Development of birch leaves and the growth energetics ofEpirrita autumnata (Geometridae).Ecology 68:558–568.Google Scholar
  4. Ayres, M.P., Suomela, J., andMacLean, S.F., Jr. 1987. Growth performance ofEpirrita autumnata (Lepidoptera: Geometridae) on mountain birch: Trees, broods, and tree × brood interactions.Oecologia 74:450–457.CrossRefGoogle Scholar
  5. Baldwin, I.T., Schultz, J.C., andWard, D. 1987. Patterns and sources of leaf tannin variation in yellow birch (Betula allegheniensis) and sugar maple (Acer saccharum).J. Chem. Ecol. 13:1069–1078.CrossRefGoogle Scholar
  6. Basset, Y. 1992. Influence of leaf traits on the spatial distribution of arboreal arthropods within an overstorey rainforest tree.Ecol. Entomol. 17:8–16.Google Scholar
  7. Bogacheva, I.A., 1994. Leaf size selection by insects: A phenomenon created by random sampling.Oikos 69:119–124.Google Scholar
  8. Clancy, K.M. 1992. The role of sugars in western spruce budworm nutritional ecology.Ecol. Entomol. 17:189–197.Google Scholar
  9. Clausen, J.J., andKozlowski, T.T. 1965. Heterophyllous shoots inBetula papyrifera.Nature 205:1030–1031.Google Scholar
  10. Coley, P.D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest.Ecol. Monogr. 53:209–233.Google Scholar
  11. DeJong, T.M., andDoyle, J.F. 1985. Seasonal relationships between leaf nitrogen content (photosynthetic capacity) and leaf canopy light exposure in peach (Prunus persica).Plant Cell Environ. 8:701–706.Google Scholar
  12. Denno, R.F., andMcClure, M.S. 1983. Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  13. Dubois, M., Gilles, K., Hamilton, J., Pebers, P., andSmith, F. 1956. Colorimetric method for determination of sugars and related substances.Anal. Chem. 28:350–356.CrossRefGoogle Scholar
  14. Edwards, P.B., Wanjura, W.J., Brown, W.V., andDearn, J.M. 1990. Mosaic resistance in plants.Nature 347:434.CrossRefGoogle Scholar
  15. Gill, D.E., andHalverson, T.G. 1984. Fitness variation among branches within trees, pp. 105–116,in B. Shorrocks (ed.). Evolutionary Ecology. The 23rd Symposium of The British Ecological Society. Leeds 1982. Blackwell, Oxford.Google Scholar
  16. Gould, F. 1984. Mixed function oxidases and herbivore polyphagy: The devil's advocate position.Ecol. Entomol. 9:29–34.Google Scholar
  17. Guerra, D.J., Cothren, J.T., andPhillips, J.R. 1990. Influence of selected phenolic compounds on development of bollworm (Lepidoptera: Noctuidae) larvae.J. Econ. Entomol. 83:2115–2118.Google Scholar
  18. Hanhimäki, S. 1989. Induced resistance in mountain birch: Defence against leaf-chewing insect guild and herbivore competition.Oecologia 81:242–248.Google Scholar
  19. Hanhimaki, S., Senn, J., andHaukioja, E. 1995. The convergence in growth of foliage-chewing insect species on individual mountain birch trees.J. Anim. Ecol. 64: In press.Google Scholar
  20. Harper, J.L. 1977. Population Biology of Plants. Academic Press, London.Google Scholar
  21. Harper, J.L. 1981. The concept of population in modular organisms, pp. 53–77,in R.M. May (ed.). Theoretical Ecology, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  22. Haukioja, E. 1991a. The influence of grazing on the evolution, morphology and physiology of plants as modular organisms.Phil. Trans. R. Soc. London B. 333:241–247.Google Scholar
  23. Haukioja, E. 1991b. Induction of defenses in trees.Annu. Rev. Entomol. 36:25–42.CrossRefGoogle Scholar
  24. Haukioja, E., Niemela, P., andSiren, S. 1985a. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in the mountain birchBetula pubescens ssp.tortuosa.Oecologia 65:214–222.CrossRefGoogle Scholar
  25. Haukioja, E., Suomela, J., andNeuvonen, S. 1985b. Long-term inducible resistance in birch foliage: Triggering cues and efficacy on a defoliator.Oecologia 65:363–369.CrossRefGoogle Scholar
  26. Haukioja, E., Neuvonen, S., Hanhimäki, S., andNiemelä, P. 1988a. The autumnal mothEpirrita autumnata in Fennoscandia, pp. 163–178,in A.A. Berryman (ed.). Dynamics of Forest Insect Populations: Patterns, Causes, and Management Strategies. Plenum, New York.Google Scholar
  27. Haukioja, E., Pakarinen, E., Niemelä, P., andIso-Iivari, L. 1988b. Crowding-triggered phenotypic responses alleviate consequences of crowding inEpirrita autumnata (Lep., Geometridae).Oecologia 75:549–558.CrossRefGoogle Scholar
  28. Hikosaka, K., Terashima, I., andKatoh, S. 1994. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves.Oecologia 97:451–457.CrossRefGoogle Scholar
  29. Howard, J.J. 1990. Infidelity of leafcutting ants to host plants: Resource heterogeneity or defence induction?Oecologia 82:394–401.CrossRefGoogle Scholar
  30. Humphreys, F., andKelly, J. 1961. A method for determination of starch in wood.Anal. Chem. Acta 24:66–70.CrossRefGoogle Scholar
  31. Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments.Ecol. Monogr. 54:187–211.Google Scholar
  32. Jensen, T.S. 1988. Variability of Norway spruce (Picea abies L.) needles; performance of spruce sawflies (Gilpinia hercyniae Htg.).Oecologia 77:313–320.CrossRefGoogle Scholar
  33. Jerling, L. 1985. Are plants and animals alike? A note on evolutionary plant population ecology.Oikos 45:150–153.Google Scholar
  34. Kauppi, A., Rinne, P., andFerm, A. 1987. Initiation, structure and sprouting of dormant basal buds inBetula pubescens.Flora 179:55–83.Google Scholar
  35. Lunderstädt, J. 1976. Extraction and analysis of free and protein bound amino acids from Norway spruce foliage, pp. 78–83,in J.P. Miksche (ed.). Modern Methods of Forest Genetics. Springer, Berlin.Google Scholar
  36. Marigo, G. 1973. Sur une methode de fractionnement et d'estimation des composes phenoliques chez les vegetaux.Analusis 2:106–110.Google Scholar
  37. Marquis, R.J. 1988. Intra-crown variation in leaf herbivory and seed production in striped maple,Acer pensylvanicum L. (Aceraceae).Oecologia 77:51–55.CrossRefGoogle Scholar
  38. Marquis, R.J. 1992. A bite is a bite is a bite? Constraints on response to folivory inPiper arieianum (Piperaceae).Ecology 73:143–152.Google Scholar
  39. Marshall, C. 1990. Source-sink relations of interconnected ramets, pp. 23–41,in J. van Groenendael and H. de Kroon (eds.). Clonal Growth in Plants: Regulation and Function. SPB Academic Publishing, Hague, Netherlands.Google Scholar
  40. Mattson, W.J.J. 1980. Herbivory in relation to plant nitrogen content.Annu. Rev. Ecol. Syst. 11:119–161.CrossRefGoogle Scholar
  41. Meyer, G.A., andMontgomery, M.E. 1987. Relationships between leaf age and the food quality of cottonwood foliage for the gypsy moth,Lymantria dispar.Oecologia 72:527–532.CrossRefGoogle Scholar
  42. Neuvonen, S., andHaukioja, E. 1984. Low nutritive quality as defence against herbivores: Induced responses in birch.Oecologia 63:71–74.CrossRefGoogle Scholar
  43. Neuvonen, S., Haukioja, E., andMolarius, A. 1987. Delayed inducible resistance against a leaf-chewing insect in four deciduous tree species.Oecologia 74:363–369.CrossRefGoogle Scholar
  44. Ossipov, V., Nurmi, K., Loponen, J., Prokopiev, N., Haukioja, E., andPihlaja, K. 1995. HPLC isolation and identification of flavonoids from white birchBetula pubescens leaves.Biochem. Syst. Ecol. 23:213–222.CrossRefGoogle Scholar
  45. Quiring, D.T. 1993. Influence of intra-tree variation in time of budburst of white spruce on herbivory and the behaviour and survivorship ofZeiraphera canadensis.Ecol. Entomol. 18:353–364.Google Scholar
  46. Rahbé, Y., Febvay, G., Delobel, B., andBournville, R. 1988.Acyrthrosiphon pisum performance in response to the sugar and amino acid composition of artificial diets, and its relation to lucerne varietal resistance.Entomol. Exp. Appl. 48:283–292.CrossRefGoogle Scholar
  47. Raupp, M.J., andDenno, R.F. 1983. Leaf age as a predictor of herbivore distribution and abundance, pp. 91–124,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  48. Renwick, J.A.A., andChew, F.S. 1994. Oviposition behavior in Lepidoptera.Annu. Rev. Entomol. 39:377–400.CrossRefGoogle Scholar
  49. Ruohomäki, K., Hanhimäki, S., Haukioja, E., Iso-Iivari, L., Neuvonen, S., Niemelä, P., andSuomela, J. 1992. Variability in the efficacy of delayed inducible resistance in mountain birch.Entomol. Exp. Appl. 62:107–115.CrossRefGoogle Scholar
  50. SAS Institute. 1990. SAS User's Guide: Statistics, Version 6 Edition. SAS Institute Inc., Cary, North Carolina.Google Scholar
  51. Schultz, J.C. 1982. Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies, pp. 37–54,in P.A. Hedin (ed.). Plant Resistance to Insects. American Chemical Society Symposium Series 208. American Chemical Society, Washington, D.C.Google Scholar
  52. Schultz, J.C. 1983. Habitat selection and foraging tactics of caterpillars in heterogeneous trees, pp. 61–90,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  53. Scriber, J.M., andSlansky, F.J. 1981. The nutritional ecology of immature insects.Annu. Rev. Entomol. 26:183–211.CrossRefGoogle Scholar
  54. Senn, J., Hanhimaki, S., andHaukioja, E. 1992. Among-tree variation in leaf phenology and morphology an its correlation with insect performance in the mountain birch.Oikos 63:215–222.Google Scholar
  55. Shaw, G.G., Little, C.H.A., andDurzan, D.J. 1978. Effect of fertilization of balsam fir trees on spruce budworm nutrition and development.Can. J. For. Res. 8:364–374.Google Scholar
  56. Slansky, F., Jr. 1993. Nutritional ecology: The fundamental quest for nutrients, pp. 29–91,in N.E. Stamp and T.M. Casey (eds.). Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York.Google Scholar
  57. Slansky, F., Jr., andRodriguez, J.G. 1987. Nutritional Ecology of Insects. Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York.Google Scholar
  58. Slatkin, M. 1985. Somatic mutations as an evolutionary force, pp. 19–30,in P.J. Greenwood, P.H. Harvey, and M. Slatkin (eds.). Evolution Essays in Honour of John Maynard Smith. Cambridge University Press, Cambridge.Google Scholar
  59. Sokal, R.R., andRohlf, F.J. 1981. Biometry. Freeman, San Francisco.Google Scholar
  60. Sprugel, D.G., Hinckley, T.M., andSchaap, W. 1991. The theory and practice of branch autonomy.Annu. Rev. Ecol. Syst. 22:309–334.CrossRefGoogle Scholar
  61. Stamp, N.E., andBowers, M.D. 1990. Phenology of nutritional differences between new and mature leaves and its effect on caterpillar growth.Ecol. Entomol. 15:447–454.Google Scholar
  62. Suomela, J., andAyres, M.P. 1994. Within-tree and among-tree variation in leaf characteristics of mountain birch and its implications for herbivory.Oikos 70:212–222.Google Scholar
  63. Suomela, J., andNilson, A. 1994. Within-tree and among-tree variation in growth ofEpirrita autumnata on mountain birch leaves.Ecol. Entomol. 19:45–56.Google Scholar
  64. Suomela, J., Kaitaniemi, P., andNilson, A. 1995. Systematic within-tree variation in mountain birch leaf quality for a geometrid,Epirrita autumnata.Ecol. Entomol. 20:283–292.Google Scholar
  65. Tahvanainen, J., Julkunen-Tiitto, R., Rousi, M., andReichardt, P.B. 1991. Chemical determinants of resistance in winter-dormant seedlings of European white birch (Betula pendula) to browsing by the mountain hare.Chemoecology 2:49–54.CrossRefGoogle Scholar
  66. Tenow, O. 1972. The outbreaks ofOporinia autumnata Bkh. andOperophtera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968.Zool. Bidr. (Uppsala) Suppl. 2:1–107.Google Scholar
  67. Thompson, J.N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects.Entomol. Exp. Appl. 47:3–14.CrossRefGoogle Scholar
  68. Tuomi, J., andVuorisalo, T. 1989. Hierarchical selection in modular organisms.Trends Ecol. Evol. 4:209–213.CrossRefGoogle Scholar
  69. Tuomi, J., Nisula, S., Vuorisalo, T., Niemelä, P., andJormalainen, V. 1988a. Reproductive effort of short shoots in silver birch (Betula pendula Roth).Experientia 44:540–541.CrossRefGoogle Scholar
  70. Tuomi, J., Vuorisalo, T., Niemelä, P., Nisula, S., andJormalainen, V. 1988b. Localized effects of branch defoliations on weight gain of female inflorescences inBetula pubescens.Oikos 51:327–330.Google Scholar
  71. Vuorisalo, T., andTuomi, J. 1986. Unitary and modular organisms: Criteria for ecological division.Oikos 47:382–384.Google Scholar
  72. Wardlaw, I.F. 1990. The control of carbon partitioning in plants.New Phytol. 116:341–381.Google Scholar
  73. Watson, M.A. 1986. Integrated physiological units in plants.Trends Ecol. Evol. 1:119–123.CrossRefGoogle Scholar
  74. Watson, M.A., andCasper, B.C. 1984. Morphogenetic constraints on patterns of carbon distribution in plants.Annu. Rev. Ecol. Syst. 15:233–258.CrossRefGoogle Scholar
  75. Watt, A.D. 1992. The influence of crown feeding position on the growth and survival of pine beauty moth larvae (Panolis flammea Den. & Schiff.) (Lep., Noctuidae).J. Appl. Entomol. 114:113–117.Google Scholar
  76. White, J. 1979. The plant as a metapopulation.Annu. Rev. Ecol. Syst. 10:109–145.CrossRefGoogle Scholar
  77. Whitham, T.G. 1981. Individual trees as heterogeneous environments: Adaptation to herbivory or epigenetic noise? pp. 9–27,in R.F. Denno and H. Dingle (eds.). Insect and Life History Patterns: Habitat and Geographic Variation. Springer, Berlin.Google Scholar
  78. Whitham, T.G., andSlobodchikoff, C.N. 1981. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: The adaptive significance of somatic mutations in plants.Oecologia 49:287–292.CrossRefGoogle Scholar
  79. Wilt, F.M., Geddes, J.D., Tamma, R.V., Miller, G.C., andEverett, R.L. 1992. Interspecific variation of phenolic concentrations in persistent leaves among six taxa from subgenusTridentatae ofArtemisia (Asteraceae).Biochem. Syst. Ecol. 20:41–52.CrossRefGoogle Scholar
  80. Winer, B.J. 1971. Statistical Principles in Experimental Design. McGraw & Hill Kogakusha, Ltd., Tokyo.Google Scholar
  81. Zou, J., andCates, R.G. 1994. Role of Douglas fir (Pseudotsuga menziesii) carbohydrates in resistance to budworm (Choristoneura occidentalis).J. Chem. Ecol. 20:395–405.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Janne Suomela
    • 1
  • Vladimir Ossipov
    • 1
    • 2
  • Erkki Haukioja
    • 1
  1. 1.Laboratory of Ecological Zoology, Department of Biology, and Kevo Subarctic Research StationUniversity of TurkuTurkuFinland
  2. 2.Institute of Forest KrasnoyarskAkademgorodokRussia

Personalised recommendations