Journal of Chemical Ecology

, Volume 21, Issue 5, pp 557–575 | Cite as

Uptake and sequestration of ouabain and other cardiac glycosides inDanaus plexippus (Lepidoptera: Danaidae): Evidence for a carrier-mediated process

  • C. Frick
  • M. Wink


Larvae ofDanaus plexippus feed almost exclusively on milkweed species of the genusAsclepias, whose characteristic secondary metabolites are cardiac glycosides (CGs). Aposematic last-instar larvae were fed with ouabain and other cardiac glycosides of differing polarities. Time course experiments show that ouabain is sequestered in the integument within 48 hr after feeding, whereas midgut tissue and hemolymph function as transient CG storage compartments. About 63% of ouabain was transferred from larvae to the butterflies, whereas 37% of ouabain was lost with larval and pupal exuviae and with the meconium. The main sites of storage in imagines are wings and integument. If mixtures of CGs are fed toD. plexippus larvae, differential sequestration can be observed: The polar ouabain contributes 58.8% of total CGs, followed by digitoxin (19.6%), oleandrin (10.6%), digoxin (4.9%), digoxigenin (4.6%) and proscillaridin A (1.5%). Thus, uptake and sequestration must be selective processes. Uptake of [3H]ouabain in vitro by isolated larval midguts was time-, pH-, and temperature-dependent and displayed an activation energy of 49 kJ/mol. Furthermore, the in vitro uptake of ouabain was inhibited (probably competitively) by the structurally similar convallatoxin. These data provide first evidence that ouabain uptake does not proceed by simple diffusion but with the aid of a carrier mechanism, which would explain the differential cardenolide uptake observed in living larvae.

Key Words

Danaus plexippus cardenolides uptake carrier sequestration chemical defense midgut integument 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appel, H.M., andMartin, M.M. 1990. Gut redox conditions in herbivorous lepidopteran larvae.J. Chem. Ecol. 16:3277–3290.CrossRefGoogle Scholar
  2. Bernays, E.A., andWoodhead, S. 1982. Incorporation of dietary phenols into the cuticle in the tree locustAnacridium melanorhodon.J. Insect Physiol. 28:601–606.CrossRefGoogle Scholar
  3. Brower, L.P. 1984. Chemical defence in butterflies. The biology of butterflies.Symp. R. Entomol. Soc. London 11:109–134.Google Scholar
  4. Brower, L.P., andFink, L.S. 1985. A natural defence system in butterflies vs birds.Ann. N.Y. Acad. Sci. 443:171–186.PubMedGoogle Scholar
  5. Brower, L.P., andGlazier, S.C. 1975. Localizations of heart poisons in the monarch butterfly.Science 188:19–25.Google Scholar
  6. Brower, L.P., andMoffitt, C.M. 1974. Palatability dynamics of cardenolides in the monarch butterfly.Nature 249:280–283.CrossRefGoogle Scholar
  7. Brower, L.P., McEvoy, P.B., Williams, K.L., andFlannary, M.A. 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.Science 177:426–429.PubMedGoogle Scholar
  8. Brower, L.P., Edmunds, M., andMoffitt, C.M. 1975. Cardenolide content and palatability of a population ofDanaus chrysippus butterflies from West Africa.J. Entomol. 49:183–196.Google Scholar
  9. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California.J. Chem. Ecol. 8:579–633.CrossRefGoogle Scholar
  10. Brower, L.P., Nelson, C.L., Fink, L.S., Seiber, J.N., andBond, C. 1988. Exaptation as an alternative to coevolution in the cardenolide-based chemical defense of monarch butterflies (Danaus plexippus L.) against avian predators, pp. 447–475,in K.C. Spencer (ed.). Chemical Mediation of Coevolution Academic Press, New York.Google Scholar
  11. Brown, K.S. 1984. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a predator.Nature 309:707–709.CrossRefGoogle Scholar
  12. Cohen, J.A. 1985. Differences and similarities in cardenolide content of queen and monarch butterflies in Florida and their ecological and evolutionary implications.J. Chem. Ecol. 11:85–103.CrossRefGoogle Scholar
  13. Detzel, A., andWink, M. 1995. Evidence for a cardenolide carrier inOncopeltus fasciatus (Dallas) (Insecta: Hemiptera).Z. Naturforsch. 50c, 127–134.Google Scholar
  14. Duffey, J. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol. 25:447–477.CrossRefGoogle Scholar
  15. Duffey, S.S., andScudder, G.G.E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera.J. Insect Physiol. 18:63–78.CrossRefGoogle Scholar
  16. Euw, J. von, Reichstein, T., andRothschild, M. 1967. Cardenolides (heart poisons) in a grasshopper feeding on milkweeds.Nature 214:35–39.PubMedGoogle Scholar
  17. Euw, J. von, Reichstein, T., andRothschild, M. 1971. Cardenolides (heart poisons) in the lygaeid bugsCaenocoris nerii andSpilostethus pandrus.Insect Biochem. 1:373–384.CrossRefGoogle Scholar
  18. Fink, L.S., andBrower, L.P. 1981. Birds can overcome the cardenolide defence of monarch butterflies in Mexico.Nature 291:67–70.CrossRefGoogle Scholar
  19. Franzl, S., Naumann, C.M., andNahrstedt, A. 1988. Cyanoglycoside storing cuticle ofZygaena larvae (Insecta, Lepidoptera).Zoomorphology 108:183–190.CrossRefGoogle Scholar
  20. Glendinning, J.I. 1990. Responses of the three mouse species to deterrent chemicals in the monarch butterfly. II. Taste tests using intact monarchs.Chemoecology 1:124–130.CrossRefGoogle Scholar
  21. Groenveld, H.W., Steijl, H., van den Berg, B., andElings, J.C. 1990. Rapid, quantitative HPLC analysis ofAsclepias fruticosa L. andDanaus plexiplus L. cardenolides.J. Chem. Ecol. 16:3373–3382.CrossRefGoogle Scholar
  22. Harborne, J.B. 1993. Introduction to Ecological Biochemistry, 4th ed. Academic Press, New York.Google Scholar
  23. Holzinger, F., Frick, C., andWink, M. 1992. Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides.FEBS Lett. 314:477–480.CrossRefPubMedGoogle Scholar
  24. Lynch, S.P., andMartin, R.A. 1987. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias viridis Walt., in northwestern Louisiana.J. Chem. Ecol. 13:47–70.CrossRefGoogle Scholar
  25. Malcom, S.B. 1990. Chemical defence in chewing and sucking insect herbivores: Plant-derived cardenolides in the monarch butterfly and oleander aphid.Chemoecology 1:12–21.CrossRefGoogle Scholar
  26. Malcolm, S.B., Brower, L.P. 1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly.Experientia 45:284–295.CrossRefGoogle Scholar
  27. Malcolm, S.B., Cockrell, B.J., andBrower, L.P. 1989. Cardenolide fingerprint of monarch butterflies reared on common milkweed,Asclepias syriaca L.J. Chem. Ecol. 15:819–853.CrossRefGoogle Scholar
  28. Martin, R.A., andLynch, S.P. 1988. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias asperula subsp.capricornu Woods., in north central Texas.J. Chem. Ecol. 14:295–318.CrossRefGoogle Scholar
  29. Nickisch-Rosenegk, E. von, Detzel, A., Schneider, D., andWink, M. 1990a. Carrier-mediated uptake of digoxin by larvae of the cardenolide sequestering moth,Syntomeida epilais.Naturwissenschaften 77:336–338.CrossRefGoogle Scholar
  30. Nickisch-Rosenegk, E. von, Schneider, D., andWink, M. 1990b. Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctiid moth,Creatonotos transiens.Z. Naturforsch. 45c:881–894.Google Scholar
  31. Nishio, S. 1980. The fates and adaptive significance of cardenolides sequestered by larvae ofDanaus plexippus (L.) andCycnia inopiatus (Hy. Edwards). Doctoral dissertation. University of Georgia, Athens.Google Scholar
  32. Reichstein, T., von Euw, J., Parsons, J.A., andRothschild, M. 1968. Heart poisons in the monarch butterfly.Science 161:861–866.PubMedGoogle Scholar
  33. Ritland, D.B. 1991. Palatability of aposematic queen butterflies (Danaus gilippus) feeding onSarcostemma clausum (Asclepidaceae) in Florida.J. Chem. Ecol. 17:1593–1610.CrossRefGoogle Scholar
  34. Roeske, C.N., Seiber, J.N., Brower, L.P., andMofitt, C.M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies.Recent Adv. Phytochem. 10:93–167.Google Scholar
  35. Rothschild, M., Rowan, M.G., andFairbairn, J.W. 1977. Storage of cannabinoids byArctia caja andZonocercus elegans fed on chemically distinct strains ofCannabis sativa.Nature 266:650–651.CrossRefPubMedGoogle Scholar
  36. Scudder, G.G.E., andMeredith, J. 1982a. Morphological basis of cardiac glycoside sequestration byOncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae).Zoomorphology (Berlin) 99:87–101.CrossRefGoogle Scholar
  37. Scudder, G.G.E., andMeredith, J. 1982b. The permeability of the midgut of three insect species to cardiac glycosides.J. Insect Physiol. 28:689–694.CrossRefGoogle Scholar
  38. Scudder, G.G.E., Moore, L.V., andIsman, M.B. 1986. Sequestration of cardenolides inOncopeltus fasciatus: Morphological and physiological adapatations.J. Chem. Ecol. 12:1171–1187.CrossRefGoogle Scholar
  39. Seiber, J.N., Tuskes, P.M., Brower, L.P., andNelson, C.J. 1980. Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.).J. Chem. Ecol. 6:321–339.CrossRefGoogle Scholar
  40. Seiber, J.N., Brower, L.P., Lee, S.M., McChesney, M.M., Cheung, H.T.A., Nelson, C.J., andWatson, T.R. 1986. Cardenolide connection between overwintering monarch butterflies from Mexico and their larval food plant,Asclepias syriaca.J. Chem. Ecol. 12:1157–1170.CrossRefGoogle Scholar
  41. Vaughan, G.L., andJungreis, A.M. 1977. Insensitivity of lepidopteran tissues to ouabain: Physiological mechanisms for protection from cardiac glycosides.J. Insect Physiol. 23:585–589.CrossRefGoogle Scholar
  42. Wiegrebe, H., andWichtl, M. 1993. High performance liquid chromatographic determination of cardenolides inDigitalis leaves after solid-phase extraction.J. Chromatogr. 630:402–407.CrossRefPubMedGoogle Scholar
  43. Wink, M., andSchneider, D. 1990. Fate of plant-derived secondary metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais andCreatonotos transiens).J. Comp. Physiol. B 160:389–400.CrossRefGoogle Scholar
  44. Wink, M., andSchneider, D. 1988. Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting moth,Creatonotos transiens.Naturwissenschaften 75:524–525.CrossRefGoogle Scholar
  45. Wink, M., Schneider, D., andWitte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth,Creatonotos transiens: Stereochemical conversion of heliotrine.Z. Naturforsch. 43c:737–741.Google Scholar
  46. Wink, M., Montllor, C., Bernays, E.A., andWitte, L. 1991.Uresiphita reversalis (Lep. Pyralidae): Carrier-mediated uptake and sequestration of quinolizidine alkaloids obtained from the host plantTeline monspessulana.Z. Naturforsch. 46c:1080–1088.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • C. Frick
    • 1
  • M. Wink
    • 1
  1. 1.Institut für Pharmazeutische BiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations