Journal of Chemical Ecology

, Volume 21, Issue 5, pp 507–523 | Cite as

The “Raison D'être” of pyrrolizidine alkaloids inCynoglossum officinale: Deterrent effects against generalist herbivores

  • Nicole M. van Dam
  • Lucienne W. M. Vuister
  • Cora Bergshoeff
  • Helene de Vos
  • ED van Der Meijden


In this study we tested whether pyrrolizidine alkaloids (PAs) ofCynoglossum officinale serve as antifeedants against herbivores. Total PA N-oxide extracts of the leaves significantly deterred feeding by generalist herbivores. Specialist herbivores did not discriminate between food with high and low PA levels. Three PAs fromC. officinale, heliosupine, echinatine, and 3′-acetylechinatine, equally deterred feeding by the polyphagous larvae ofSpodoptera exigua. Although the plants mainly contain PAs in their N-oxide form, reduced PAs deterred feeding byS. exigua more efficiently than PA N-oxides. On rosette plants, the monophagous weevilMogulones cruciger significantly consumed more of the youngest leaves, which had the highest PA level and the highest nitrogen percentage. Larvae ofEthmia bipunctella, which are oligophagous within the Boraginaceae, did not discriminate between leaves. All generalist herbivores tested significantly avoided the youngest leaves with the highest PA levels. In the field, the oldest leaves also were relatively more damaged by herbivores than the youngest leaves. It is hypothesized that the skewed distribution of PAs over the leaves of rosette plants reflects optimal defense distribution within the plant.

Key Words

Cynoglossum officinale Boraginaceae pyrrolizidine alkaloids chemical defense specialist herbivores generalist herbivores Ethmia bipunctella Mogulones (Ceutorhynchus) cruciger Spodoptera exigua Helix aspersa Frankliniella occidentalis Locusta migratoria Lyriomyza trifolii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, R.J., Stoker, A., Beishuizen, M., Jaarsma, I., Van de Heuvel, M., Van der Meijden, E., andVerpoorte, R. 1992. Detrimental effects ofCinchona leaf alkaloids on larvae of the polyphagous insectSpodoptera exigua.J. Chem. Ecol. 18:1955–1964.CrossRefGoogle Scholar
  2. Anonymous. 1989. Pyrrolizidine Alkaloids Health and Safety Guide. World Health Organisation, Geneva.Google Scholar
  3. Bentley, M.D., Leonard, D.E., Stoddard, W.F., andZalkow, L.H. 1984. Pyrrolizidine alkaloids as feeding deterrents for spruce budworm,Choristoneura fumifera Lepidoptera: Tortricidae).Ann. Entomol. Soc. Am. 77:393–397.Google Scholar
  4. Berenbaum, M.R. 1985. Brementown revisited: Interactions among allelochemicals in plants, pp. 139–169,in G.A. Cooper-Driver, T. Swain, and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Herbivores. Plenum Press, New York.Google Scholar
  5. Bernays, E.A., andChapman, R.F. 1977. Deterrent chemicals as a basis of oligophagy inLocusta migratoria L.Ecol. Entomol. 2:1–18.Google Scholar
  6. Cates, R.G. 1980. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: the effect of resource abundance and plant chemistry.Oecologia 46:22–31.CrossRefGoogle Scholar
  7. Chapman, H.D., andPratt, P.F. 1961. Methods of analysis for soils, plants and waters. Division of Agricultural Sciences, University of California.Google Scholar
  8. Colonelli, E. 1986. Note sistematici e sinonimiche su alcuni Ceutorhynchinae (Coleoptera, Curculionidae).Fragm. Entomol. 18:419–439.Google Scholar
  9. De Jong, T.J., Klinkhamer, P.G.L., andBoorman, L.A. 1990. Biological Flora of the British Isles.Cynoglossum officinale L.J. Ecol. 78:1123–1144.Google Scholar
  10. Dieckmann, L. 1972. Beiträge zur Insektenfauna der DDR: Coleoptera—Curculionidae: Ceutorhynchinae.Beitr. Entomol. 22:3–128.Google Scholar
  11. Dreyer, D.L., Jones, K.C., andMolyneux, R.J. 1985. Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of indolizidine alkaloid swainsonine.J. Chem. Ecol. 11:1045–1051.CrossRefGoogle Scholar
  12. Ehrlich, P.R., andRaven, P.H. 1964. Butterflies and plants. A study in coevolution.Evolution 18:586–608.Google Scholar
  13. Fraenkel, G.S. 1959. The raison d'être of secondary plant substances.Science 129:1466–1470.PubMedGoogle Scholar
  14. Freese, A. 1990. Weed projects for Canada. Hound's tongue (Cynoglossum officinale L.). Work in Europe in 1990. CAB Int. Inst. Biol. Cont. Report, Delemont, Switzerland.Google Scholar
  15. Gittenberger, E., Backhuys, W., andRipken, T.E.J. 1970. De landslakken van Nederland. K.N.N.V., Amsterdam.Google Scholar
  16. Greimer, K. 1900. Giftig wirkende Boragineenalkaloide.Arch. Pharm. 1900:505–531.Google Scholar
  17. Gustafsson, A., andGadd, I. 1965. Mutations and crop improvement. II. The genusLupinus (Leguminosae).Hereditas 53:15–39.Google Scholar
  18. Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 3rd ed. Academic Press, London.Google Scholar
  19. Harper, J.L. 1989. The value of a leaf.Oecologia 80:53–58.CrossRefGoogle Scholar
  20. Hartmann, T. 1991. Alkaloids, pp. 79–12,in G.A. Rosenthal, and M.R. Berenbaum (eds.). Herbivores. Their Interaction with Secondary Plant Metabolites, Vol. I: The Chemical Participants. Academic Press, San Diego.Google Scholar
  21. Hartmann, T., andWitte, L. 1994. Chemistry, biology and chemoecology of the pyrrolizidine alkaloids, pp. 155–233,in S.W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol. 9. Pergamon Press Elmsford, New York, In press.Google Scholar
  22. Hartmann, T., andZimmer, M. 1986. Organ specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annualSenecio species.J. Plant Physiol. 112:67–80.Google Scholar
  23. Hartmann, T., Ehmke, A., Eilert, U., Von Borstel, K., andTheuring, C., 1989. Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides inSenecio vulgaris L.Planta 177:98–107.CrossRefGoogle Scholar
  24. Heath, J. 1983. The Moths and Butterflies of Great Britain and Ireland, Vol. 10: Noctuidae (Cuculliinae to Hypeninae) and Agiristidae. Harley Books, Essex.Google Scholar
  25. Hengauer, R. 1964. Chemotaxonomie der Pflanzen, Vol. III. Birkhäuser Verlag, Basel.Google Scholar
  26. Heijerman, T. 1993. Naamlijst van de snuitkevers van Nederland en het omliggende gebied (Curculionoidae: Curculinoidae, Apionidae, Attelabidae, Urodontidae, Anthribidae en Nemonychidae).Ned. Faun. Med. 5:19–46.Google Scholar
  27. Hodkinson, I.D., andHughes, M.K. 1982. Insect Herbivores. Chapman and Hall, London.Google Scholar
  28. Hunter, W.B., andUllman, D.E. 1989. Analysis of mouthpart movements during feeding ofFrankliniella occidentalis (Pergande) andF. schultzei Trybom (Thysanoptera: Thripidae).Int. J. Insect Morphol. Embryol. 18:161–171.CrossRefGoogle Scholar
  29. Jones, C.G. 1983. Phytochemical variation, colonization, and insect communities: The case of bracken fern (Pteridium aquilinum), pp. 513–558,in R.F. Denno, and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  30. Krug, E., andProksch, P. 1993. Influence of dietary alkaloids on survival and growth ofSpodoptera littoralis.Biochem. Syst. Ecol. 21:749–756.CrossRefGoogle Scholar
  31. Mattocks, A.R. 1967. Spectrophotometric determination of unsaturated pyrrolizidine alkaloids.Anal. Chem. 39:443–447.CrossRefPubMedGoogle Scholar
  32. Mattocks, A.R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press, London.Google Scholar
  33. Minkenberg, O.P.J.M., andvan Lenteren, J.C. 1986. The leaf-minersLyriomyza bryoniae andL. trifolii (Diptera: Agromyzidae), their parasites and host plants: A review.Agric. Univ. Wageningen Papers 86–2:1–50.Google Scholar
  34. Molyneux, R.J., andRoitman, J.N. 1980. Specific detection of pyrrolizidine alkaloids on thinlayer chromatograms.J. Chromatogr. 195:412–415.CrossRefGoogle Scholar
  35. Mooney, H.A., andGulmon, S.L. 1982. Constraints on leaf structure and function in reference to herbivory.BioScience 32:198–206.Google Scholar
  36. Prins, A.H., andLaan, R.M. 1988. Do plant characteristics influence the numbers ofEthmia bipunctella F. onCynoglossum officinale L.? Proceedings, 40th International Symposium on Crop Protection. Gent, Belgium. pp. 1409–1415.Google Scholar
  37. Prins, A.H., andNell, H.W. 1990. Positive and negative effects of herbivory on the population dynamics ofSenecio jacobaea L. andCynoglossum officinale L.Oecologia 83:325–335.Google Scholar
  38. Prins, A.H., Nell, H.W., andKlinkhamer, P.G.L. 1992. Size-dependent root herbivory onCynoglossum officinale L.Oikos 65:409–413.Google Scholar
  39. Raupp, M.J., andDenno, R.F. 1983. Leaf age as a predictor of herbivore distribution, pp. 91–124,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  40. Sattler, K. 1967. Microlepidoptera palaearctica. Zweiter Band: Ethmiidae. H.G. Amsel, G. Frantisek, and H. Reisser (eds.). G. Fromme & Co., Vienna.Google Scholar
  41. Scriber, J.M. 1984. Host plant suitability, pp. 159–202,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  42. Sokal, R.R., andRohlf, F.J. 1981. Biometry, 2nd ed. W.H. Freeman, New York.Google Scholar
  43. Soldaat, L.L., andvan der Meijden, E. 1990. Nutritional ecology of the monophagous cinnabar moth.Symp. Biol. Hung. 39:535–536.Google Scholar
  44. Speiser, B., Harmatha, J., andRowell-Rahier, M. 1992. Effects of pyrrolizidine alkaloids and sesquiterpenes on snail feeding.Oecologia 91:257–265.CrossRefGoogle Scholar
  45. Sykulska, Z. 1962. The investigation of alkaloids ofCynoglossum officinale L.Acta Pol. Pharm. 19:183–184.Google Scholar
  46. van Dam, N.M., van der Meijden, E., andVerpoorte, R. 1993. Induced responses in three alkaloid containing plant species.Oecologia 95:425–430.Google Scholar
  47. van Dam, N.M., Verpoorte, R., andvan der Meijden, E. 1994. Extreme differences in pyrrolizidine alkaloid levels between leaves ofCynoglossum officinale L.Phytochemistry 37:1013–1016.CrossRefGoogle Scholar
  48. Van Dam, N.M., Witte, L., Theuring, C., andHartmann, T. 1995. Distribution, biosynthesis, and turnover of pyrrolizidine alkaloids inCynoglossum officinale L.Phytochemistry. In press.Google Scholar
  49. Van der Meijden, E., van Wijk, C.A.M., andKooi, R.E. 1991. Population dynamics of the cinnabar moth (Tyria jacobaeae): Oscillations due to food limitation and local extinction risks.Neth. J. Zool. 41:158–173.CrossRefGoogle Scholar
  50. Wink, M. 1993. Allelochemical properties or the raison d'être of alkaloids, pp. 1–118,in G.A. Cordell (ed.). The Alkaloids, Vol. 43. Academic Press, San Diego.Google Scholar
  51. Witte, L., Rubiolo, P., Bicchi, C., andHartmann, T. 1993. Comparative analysis of pyrrolizidine alkaloids from natural sources by gas chromatography-mass spectrometry.Phytochemistry 32:187–196.CrossRefGoogle Scholar
  52. Zangerl, A.R., andBazzaz, F.A. 1992. Theory and pattern in plant defense allocation, pp. 363–391,in S. Fritz, and E.L. Simms (eds.). Plant Resistance to Herbivores and Pathogens. The University of Chicago Press, Chicago.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Nicole M. van Dam
    • 1
  • Lucienne W. M. Vuister
    • 1
  • Cora Bergshoeff
    • 1
  • Helene de Vos
    • 1
  • ED van Der Meijden
    • 1
  1. 1.Institute of Evolutionary and Ecological SciencesResearch Group Ecology of Plant-Animal InteractionsLeidenThe Netherlands

Personalised recommendations