Journal of Chemical Ecology

, Volume 21, Issue 11, pp 1735–1743 | Cite as

Structure-activity relationships of cyclopentane analogs of jasmonic acid for induced responses of canola seedlings,Brassica napus L

  • Robert Bodnaryk
  • Teruhiko Yoshihara


Jasmonic acid (JA) has potent activity in enhancing cotyledon toughness and stimulating the biosynthesis of 3-indolymethyl glucosinolate in seedlings of canola,Brassica napus L. Structure-activity relationships among cyclopentane analogs of JA revealed that maximum activity in both systems was achieved when an acetyl side chain (or a methylated acetyl side chain) occurred at the C-1 ring position, ann-pentenyl side chain at the C-2 ring position, and a keto group at the C-3 ring position. Although coronatine and coronafacic acid both possess a cyclopentane ring with a keto group at the C-3 position, only coronatine was active inB. napus seedlings. Coronatine, a chlorosis-inducing toxin essential to the infectivity of pathovars ofPseudomonas syringae, acted as a complete molecular mimic of JA and had the same stimulatory effect on specific indole glucosinolates inBrassica species, thereby casting doubt on the hypothesis that indole glucosinolates serve in bacterial pathogen defense. Similarities and differences for structural requirements for activity among several diverse physiological systems affected by jasmonates likely reflect species-, tissue-, and developmental-specific differences.

Key Words

Jasmonate Brassica napus canola toughness glucosinolate structure-activity analogue defense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrfcht, T., Kehlfn, A., Stahl, K., Knofel, H.-D. Sfmbdner, G., andWfiler, E.W. 1993. Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody.Planta 191:86–94.Google Scholar
  2. Bender, C.L., Stonl, H.E., Simms, J.J., andCooksey, D.A. 1987. Reduced pathogen fitness ofPseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production.Physiol. Mol. Plant Pathol. 30:273–283.Google Scholar
  3. Bennett, R.N., andWallsgrove, R.M. 1994. Secondary metabolites in plant defence mechanisms.New Phytol. 127:617–633.Google Scholar
  4. Birch, A.N., Griffiths, D.W., Horkins, R.J., Smith, Wm.H.M., andMcKinlay, R.G. 1992. Glucosinolate responses of swede, kale, forage and oilseed rape to root damage by turnip root fly (Delia floris) larvae.J. Sci. Food Agric. 60:1–9.Google Scholar
  5. Bodnaryn, R.P. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard.Phytochemistry 301:2671–2677.Google Scholar
  6. Bodnaryk, R.P. 1994. Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard.Phytochemistry 35:301–305.Google Scholar
  7. Bodnaryk, R.P., andPalaniswamy, P. 1990. glucosinolate levels in the cotyledons of mustard.Brassica juncea L. and rape.B. napus do not determine feeding rates of the flea beetle.Phyllotreta cruciferae (Goeze).J. Chem. Ecol. 16:2735–2746.Google Scholar
  8. Bondaryk, R.P., andRymerson, R.T. 1994. Effect of wounding and jasmonates on the physicochemical properties and insect defence responses of canola seedlings.Brassica napus L.Can. J. Plant Sci. 74:899–907.Google Scholar
  9. Brownf, L.M., Conn, K.L., Ayfr, W.A., andTfwari, J.P. 1991. The camalexins: new phytoalexins produced in the leaves ofCamelina sativa (Cruciferae).Tetrahedron 47:3909.Google Scholar
  10. Buicher, D.N., Ei-Tigani, S., andIngram, D.S. 1974. The role of indole glucosinolates in the clubroot disease of the cruciferae.Physiol. Plant Pathol. 4:127–140.Google Scholar
  11. Conn, K.L., Tewari, J.P., andDahiya, J.S. 1988. Resistance toAlternaria brassicae and phytolaexin-clicitation in rapeseed and other crucifers.Plant Sci. 56:21–25.Google Scholar
  12. Crfelman, R.A., Tifrney, M.J., andMellet, J.E. 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.Proc. Natl. Acad. Sci. U.S.A. 89:4938–4941.PubMedGoogle Scholar
  13. Dahiya, J.S., andRimmer, S.R. 1988. Phytoalexin accumulation in tissues ofBrassica napus inoculated withLeptosphaeria maculans.Phytochemistry 27:3105–3107.Google Scholar
  14. Doughty, K.J., Porter, A.J.R., Morton, A.M., Kiddle, G., Bock, C.H., andWallsgrove, R. 1991. Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. II. Response to infection byAlternaria brassicae (Berk.) Sacc.Ann. Appl. Biol. 118:469–477.Google Scholar
  15. Enyedi, A.J., Yalpani, N., Silverman, P., andRaskin, I. 1992. Signal molecules in systemic plant resistance to pathogens and pests.Cell 70:879–886.PubMedGoogle Scholar
  16. Farmer, E.E., andRyan, C.A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves.Proc. Natl. Acad. Sci. U.S.A. 87:7713–7716.PubMedGoogle Scholar
  17. Farmer, E.E., andRyan, C.A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors.Plant Cell 4:129–134.PubMedGoogle Scholar
  18. Farmer, E.E., Johnson, R.R., andRyan, C.A. 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid.Plant Physiol. 98:995–1002.Google Scholar
  19. Feys, B.J.F., Benedetti, C.E., Penfold, C.N., andTurner, J.G. 1994. Arabadopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen.Plant Cell 6:751–759.PubMedGoogle Scholar
  20. Greulich, F., Yoshihara, T., Toshima, H., andIchihara, A. 1993. Coronatine, a bacterial toxin. affects the regulation of the ethylene biosynthesis in the same way as methyl (+)-epijasmonate. XV International Botanical Congress, Yokohama. p. 388.Google Scholar
  21. Gundlach, H., Muller, M.J., Kutchan, T.M., andZenk, M.H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures.Proc. Natl. Acad. Sci. U.S.A. 89:2389–2393.PubMedGoogle Scholar
  22. Hanley, A.B., Heaney, R.K., andFenwick, G.R. 1983. Improved isolation of glucobrassicin and other glucosinolates.J. Sci. Food Agric. 34:869–873.Google Scholar
  23. Ichihara, A., Shiraishi, K., Sato, H., Sakamura, K., Nishiyama, K., Sakai, R., Furusaki, A., andMatsumoto, T. 1977. The structure of coronatine.J. Am. Chem. Soc. 99:636–637.Google Scholar
  24. Ishikawa, A., Yoshihara, T., andNakamura, K. 1994. Structure-activity relationships of jasmonates in the induction of expression of two proteinase inhibitor genes of potato.Biosci. Biotech. Biochem. 58:544–547.Google Scholar
  25. Jejelowo, O.A., Conn, K.L., andTewari, J.P. 1991. Relationship between conidial concentration. germling growth, and phytoalexin production byCamelina sativa leaves inoculated withAlternaria brassicae.Mycol. Res. 95:928–934.Google Scholar
  26. Koritsas, V.M., Lewis, J.A., andFenwick, G.R. 1989. Accumulation of indole glucosinolates inPsylliodes chrysocephala L-infested, or -damaged tissues of oilseed rape (Brassica napus L.).Experientia 45:493–495.Google Scholar
  27. Larsen, L., Niflsen, J.K., Ploger, A., andSorfnsen, H. 1985. Responses of some beetle species of varieties of oilseed rape and to pure glucosinolates, pp. 230– H. Sorensen (ed.). Advances in the Production and Utilization of Cruciferous Crops. Martins Nijhoff/Dr. W. Junk Publishers, Dordrecht.Google Scholar
  28. Mitchell, R.E., andYoung, H. 1978. Identification of a chlorosis-inducing toxin ofPseudomonas glycinea as coronatine.Phytochemistry 17:2028–2029.Google Scholar
  29. Mitchell, R.E., Hale, C.N., andShanks, J.C. 1983. Production of different pathogenic symptoms and different toxins by strains ofPseudomonas syringae pv. tomato not distinguishable by gel immunodiffusion assay.Physiol. Plant Pathol. 23:315–322.Google Scholar
  30. Mithen, R.F., andMagrath, R. 1992. Glucosinolates and resistance toLeptosphaeria maculans in wild and cultivated Brassica species.Plant Breed. 108:60–68.Google Scholar
  31. Nashaat, N.I., andRawlinson, C.J. 1994. The response of oilseed rape (Brassica napus ssp. oleifera) accessions with different glucosinolate and erucic acid contents to four isolates ofPeronospora parasitica (downy mildew) and the identification of new sources of resistance.Plant Pathol. 43:278–285.Google Scholar
  32. Rausch, T., Butcher, D.N., andHilgenberg, W. 1983. Indole-3-methyl glucosinolate biosynthesis and metabolism in clubroot-diseased plants.Physiol. Plant. 58:93–100.Google Scholar
  33. Rawlinson, C.J., Doughty, K.L., Bock, C.H., Church, V.J., Milford, G.F.J., andFieldsend, J.K. 1989. Diseases and responses to disease and pest control on single- and double-low cultivars of winter oilseed rape.Aspects Appl. Biol. 23:393–400.Google Scholar
  34. Rouxel, T., Renard, M., Kollmann, A., andBousquet, J.F. 1990. Brassilexin accumulation and resistance toLeptosphaeria maculans inBrassica spp. and progeny of an interspecific crossB. juncea × B. napus.Euphytica 46:175–181.Google Scholar
  35. Rounel, T., Kollmann, A., Boulidard, L., andMithen, R. 1991. Abiotic elicitation of indole phytoalexins and resistance toLeptosphaeria maculans within Brassiceae.Planta 184:271–278.Google Scholar
  36. Schnug, E., andCeynowa, J. 1990. Phytopathological aspects of glucosinolates in oilseed rape.J. Agron. Crop. Sci. 165:319–328.Google Scholar
  37. Sembdner, G., andParthier, B. 1993. The biochemistry and the physiological and molecular actions of jasmonates.Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589.Google Scholar
  38. Shiraishi, K., Konoma, K., Sato, H., Ichichara, A., Sakamura, S., Nishiyama, K., andSakai, R. 1979. The structure-activity relationships in coronatine analogs and amino compounds derived from (+)-coronafacic acid.Agric. Biol. Chem. 43:1753–1757.Google Scholar
  39. Spak, J., Kolarova, L., Lewis, J., andFenwick, G.R. 1993a. The effect of glucosinolates (mustard oilseed glycosides) and products of their enzyme degradation on the infectivity of turnip mosaic virus.Biol. Plant 35:73–80.Google Scholar
  40. Spak, J., Lewis, J., andFenwick, G.R. 1993b. Changes in the glucosinolate content of oilseed rape plants following infection with turnip mosaic virus.Physiol. Mol. Plant Paths. 43:437–442.Google Scholar
  41. Siobbs, L.W., Shattuck, V.I., andShelp, B.J. 1991. Effect of turnip mosaic virus infection on the development, virus titre, glucosinolate concentrations, and storability of rutabaga roots.Plant Dis. 75:575–579.Google Scholar
  42. Tsuji, J., Jackson, E.P., Gage, D.A., Hammerschmidt, R., andSomfrville, S.C. 1992. Phytoalexin accumulation inArabidopsis thaliana during the hypersensitive reaction toPseudomonas syringae pvsyringae.Plant Physiol. 98:1304–1309.Google Scholar
  43. Weber, G., Oswald, S., andZollner, U. 1986. Suitability of rape cultivars with a different glucosinolate content forBrevicoryne brassicae (L.) andMyzus persicae (Sulzer) (Hempitera. Aphididae).Z. Pflanzenkr. Pflanzenschutz 93:113–124.Google Scholar
  44. Weiler, E.W., Kutchan, T.M., Gorba, T., Brodschelm, W., Niesel, U., andBublitz, F. 1994. ThePseudomonas phytotoxin coronatine mimies octadecanoid signalling molecules of higher plants.FEBS Lett. 345:9–13.PubMedGoogle Scholar
  45. Yamane, H., Sugawara, J., Suzuki, Y., Shimamura, E., andTakahashi, N. 1980. Syntheses of jasmonic acid related compounds and their structure-activity relationships on the growth of rice seedlings.Agric. Biol. Chem. 44:2857–2864.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Robert Bodnaryk
    • 1
  • Teruhiko Yoshihara
    • 2
  1. 1.Agriculture and Agri-Food CanadaWinnipeg Research CentreWinnipegCanada
  2. 2.Department of Bioscience and ChemistryFaculty of Agriculture, Hokkaido UniversitySapporoJapan

Personalised recommendations