Advertisement

Journal of Chemical Ecology

, Volume 22, Issue 4, pp 605–615 | Cite as

Mandibular gland components of european and africanized honey bee queens (Apis mellifera L.)

  • T. Pankiw
  • M. L. Winston
  • E. Plettner
  • K. N. Slessor
  • J. S. Pettis
  • O. R. Taylor
Article

Abstract

The composition of the five-component honey bee queen mandibular gland pheromone (QMP) of mated European honey bee queens was compared to those of virgin and drone-laying (i.e., laying only haploid unfertilized eggs that develop into males), European queens and Africanized mated queens. QMP of mated European queens showed significantly greater quantities of individual components than all queen types compared, except for a significantly greater quantity of 9-hydroxy-(E)-2-decenoic acid (9-HDA) found in Africanized queens. Glands of European drone-laying queens contained quantities intermediate between virgin and mated queens, reflecting their intermediate reproductive state and age. QMP ontogeny shifts from a high proportion of 9-keto-(E)-2-decenoic acid (ODA) in young unmated queens to roughly equal proportions of ODA and 9-HDA in mated queens. A biosynthetic shift occurs after mating that results in a greater proportion of 9-HDA, methylp-hydroxybenzoate (HOB), and 4-hydroxy-3-methoxyphenylethanol (HVA) production, accompanied by a decreased proportion of ODA. Africanized QMP proportions of ODA and 9-HDA were significantly different from European queens. A quantitative definition of a “queen equivalent” of QMP is proposed for the various queen types, and a standard queen equivalent for mated European honeybee queen mandibular gland pheromone is adopted as 200µg ODA, 80µg 9-HDA, 20µg HOB, and 2 µg HVA.

Key Words

Apis mellifera honey bee queen mandibular gland pheromone Africanized honey bee 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allsopp, M. H. 1988. Mandibular gland acids and laying workers in African honey bees, pp. 72–79,in G. R. Needham, R. E. Page, M. Delfinado-Baker, and C. E. Bowman (eds.). Africanized Honey Bees and Bee Mites. Ellis Horwood Ltd., Chichester.Google Scholar
  2. Conover, W. J. 1980. Practical Nonparametric Statistics, 2nd ed. J. Wiley & Sons, Toronto.Google Scholar
  3. Currie, R. W., Winston, M. L., Slessor, K. N., andMayer, D. F. 1992a. Effect of synthetic queen mandibular gland pheromone sprays on pollination of fruit crops by honey bees (Apis mellifera L. Hymenoptera: Apidae).J. Econ. Entomol. 85:1293–1299.Google Scholar
  4. Currie, R. W., Winston, M. L., andSlessor, K. N. 1992b. Effect of synthetic queen mandibular gland pheromone on honey bee (Apis mellifera L. Hymenoptera: Apidae) pollination of berry crops.J. Econ. Entomol. 85:1300–1306.Google Scholar
  5. Crewe, R. M. 1982. Compositional variability: The key to social signals produced by the honeybee mandibular glands, pp. 318–325,in M. D. Breed, G. D. Michener, and H. E. Evans (eds.). The Biology of Social Insects. Westview Press, London.Google Scholar
  6. Crewe, R. M., andVelthuis, H. M. W. 1980. False queens: A consequence of mandibular gland signals in worker honeybees.Naturwissenschaften 67:467–469.Google Scholar
  7. Daly, H. V., andBalling, S. S. 1978. Identification of Africanized honey bees in the Western hemisphere by discriminant analysis.J. Kans. Entomol. Soc. 51:857–869.Google Scholar
  8. Gast, von R. 1967. Untersuchungen über den Einfluss der Königinnernsubstanz auf die Entwicklung der endokrinen Drüsen bei der Arbeiterin der Honigbiene (Apis mellifica).Insectes Soc. 14:1–12.Google Scholar
  9. Hildebrandt, H. H., andKaatz, H. H. 1990. Impact of queen pheromone on the physiological status of worker honey bees (Apis mellifera L.), pp. 740–741,in G. K. Veeresh, B. Mallick, and C. A. Viraktamath (eds.). Proceedings of the 11th International Congress of the I.U.S.S.I., Bangalore, India.Google Scholar
  10. Kaatz, H. H., Hildebrandt, H. H., andEngels, W. 1992. Primer effect of queen pheromone on juvenile hormone biosynthesis in adult worker honey bees.J. Comp. Physiol. B. 162:588–592.Google Scholar
  11. Kaminski, L.-A., Slessor, K. N., Winston, M. L., Hay, N. W., andBorden, J. H. 1990. Honey bee response to queen mandibular pheromone in a laboratory bioassay.J. Chem. Ecol. 16:841–849.Google Scholar
  12. Naumann, K., Winston, M. L., Wyborn, M. H., andSlessor, K. N. 1990. Effects of synthetic honey bee (Hymenoptera: Apidae) queen mandibular gland pheromone on workers in packages.J. Econ. Entomol. 83:1271–1275.Google Scholar
  13. Pankiw, T., Winston, M. L., andSlessor, K. N. 1994. Variation in worker response to honey bee (Apis mellifera L.) queen mandibular pheromone (Hymenoptera: Apidae).J. Insect Behav. 7:1–15.Google Scholar
  14. Pettis, J. S., Winston, M. L., andCollins, A. M. 1994. Suppression of queen rearing in European and Africanized honey beesApis mellifera L. by synthetic queen mandibular gland pheromone.Insectes Soc. 42:1–9.Google Scholar
  15. Pettis, J. S., Winston, M. L., andSlessor, K. N. 1995. Behavior of queen and worker honey beesApis mellifera L. (Hymenoptera: Apidae) in response to exogenous queen mandibular gland pheromone.Ann. Entomol. Soc. Am. 88:580–588.Google Scholar
  16. Seeley, T. D. 1985. Honeybee Ecology. A Study of Adaptation in Social Life. Princeton University Press, Princeton, New Jersey.Google Scholar
  17. Slessor, K. N., Kaminski, L.-A., King, G. G. S., Borden, J. H., andWinston, M. L. 1988. Semiochemical basis of the retinue response to queen honey bees.Nature 332:354–356.Google Scholar
  18. Slessor, K. N., Kaminski, L.-A., King, G. G. S., andWinston, M. L. 1990. Semiochemicals of the honey bee queen mandibular glands.J. Chem. Ecol. 16:851–860.Google Scholar
  19. Snedecor, G. W., andCochran, W. G. 1980. Statistical Methods, 7th ed. Iowa State University Press, Ames.Google Scholar
  20. Winston, M. L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MA.Google Scholar
  21. Winston, M. L. 1992. The biology and management of Africanized honey bees.Annu. Rev. Entomol. 37:173–193.Google Scholar
  22. Winston, M. L., Slessor, K. N., Smirle, M. J., andKandil, A. A. 1982. The influence of queen-produced substance, 9-9-HDA, no swarm clustering behavior in honey beeApis mellifera L.J. Chem. Ecol. 8:1283–1288.Google Scholar
  23. Winston M. L., Taylor, O. R., andOtis, G. W. 1983. Some differences between temperate European and tropical African and South American honeybees.Bee World 64:12–21.Google Scholar
  24. Winston, M. L., Slessor, K. N., Willis, L. G., Naumann, K., Higo, H. A., Wyborn, M. H., andKaminski, L.-A. 1989. The influence of queen mandibular gland pheromones on worker attraction to swarm clusters and inhibition of queen rearing in the honey bee (Apis mellifera L.).Insectes Soc. 36:15–27.Google Scholar
  25. Winston, M. L., Higo, H. A., andSlessor K. N. 1990. Effect of various dosages of queen mandibular gland pheromone on the inhibition of queen rearing in the honey bee (Hymenoptera: Apidae).Ann. Entomol. Soc. Am. 83:234–238.Google Scholar
  26. Winston, M. L., Higo, H. A., Colley, S. J., Pankiw, T., andSlessor, K. N. 1991. The role of queen mandibular pheromone and colony congestion in honey bee (Apis mellifera L.) reproductive swarming.J. Insect Behav. 4:649–659.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • T. Pankiw
    • 1
    • 3
  • M. L. Winston
    • 1
    • 3
  • E. Plettner
    • 2
    • 3
  • K. N. Slessor
    • 2
    • 3
  • J. S. Pettis
    • 1
    • 3
  • O. R. Taylor
    • 1
    • 3
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  3. 3.Department of Entomology and Systematics, and EcologyUniversity of KansasLawrence

Personalised recommendations