Journal of Chemical Ecology

, Volume 21, Issue 6, pp 859–867 | Cite as

Chemical nature of larval osmeterial secretions of papilionid butterflies in the generaParnassius, Sericinus andPachliopta

  • Keiichi Honda
  • Nanao Hayashi
Article

Abstract

Volatile components of the larval osmeterial secretion ofParnassius glacialis (Parnassiinae, Parnassiini) consisted of isobutyric acid, 2-methylbutyric acid, and their methyl esters. In contrast, the osmeterial exudate ofSericinus montela (Parnassiinae, Zerynthiini) was characterized as monoterpene hydrocarbons comprisingβ-myrcene (Major),α-pinene, sabinene, limonene, andβ-phellandrene, whereas that ofPachliopta aristolochiae (Papilioninae, Troidini) was composed of numerous sesquiterpene hydrocarbons, includingα-himachalene,α-amorphene, and germacrene-A, and a few oxygenated sesquiterpenoids. In these three species, the chemical nature of the secretions of the last and the penultimate instars was essentially of similar quality, suggesting that the three genera,Parnassius, Sericinus, andPachliopta, are assigned to homogeneous types.

Key Words

Osmeterial secretion Lepidoptera Papilionidae Parnassiinae Papilioninae Parnassius glacialis Sericinus montela Pachliopta aristolochiae aliphatic acid and ester monoterpene sesquiterpene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, N.H., andFalcone, M.S. 1969. The identification of sesquiterpene hydrocarbons from gas-liquid chromatography retention data.J. Chromatogr. 44:52–59.Google Scholar
  2. Burger, B.V., Munro, Z., Röth, M., Spies, H.S.C., Truter, V., Geertsema, H., andHabich, A. 1985. Constituents of osmeterial secretion of pre-final instar larvae of citrus swallowtail,Papilio demodocus (Esper) (Lepidoptera: Papilionidae).J. Chem. Ecol. 11:1093–1113.Google Scholar
  3. Crossley, A.C., andWaterhouse, D.F. 1969. The ultrastructure of the osmeterium and the nature of its secretion inPapilio larvae (Lepidoptera).Tissue Cell 1:525–554.Google Scholar
  4. Eisner, T., andMeinwald, Y.C. 1965. Defensive secretion of a caterpillar (Papilio).Science 150:1733–1735.Google Scholar
  5. Eisner, T., Pliske, T.E., Ikeda, M., Owen, D.F., Vázquez, L., Pérez, H., Franclemont, J.G., andMeinwald, J. 1970. Defensive mechanisms of arthropods-XXVII. Osmeterial secretion of papilionid caterpillars (Baronia, Papilio, Eurytides).Ann. Entomol. Soc. Am. 63:914–915.Google Scholar
  6. Eisner, T., Kluge, A.F., Ikeda, M.I., Meinwald, Y.C., andMeinwald, J. 1971. Defensive mechanisms of arthropods. XXIX. Sesquiterpenes in the osmeterial secretion of a papilionid butterfly,Battus polydamas.J. Insect Physiol. 17:245–250.Google Scholar
  7. Honda, K. 1980a. Volatile constituents of larval osmeterial secretions inPapilio protenor demetrius.J. Insect Physiol. 26:39–45.Google Scholar
  8. Honda, K. 1980b. Osmeterial secretions of papilionid larvae in the generaLuehdorfia, Graphium andAtrophaneura (Lepidoptera).Insect Biochem. 10:583–588.Google Scholar
  9. Honda, K. 1981. Larval osmeterial secretions of swallowtails (Papilio).J. Chem. Ecol. 7:1089–1113.Google Scholar
  10. Honda, K. 1983a. Defensive potential of components of the larval osmeterial secretion of papilionid bufferflies against ants.Physiol. Entomol. 8:173–179.Google Scholar
  11. Honda, K. 1983b. Evidence for de novo biosynthesis of osmeterial secretions in young larvae of the swallowtail butterflies (Papilio): Deuterium incorporation in vivo into sesquiterpene hydrocarbons as revealed by mass spectrometry.Insect Sci. Appl. 4:255–261.Google Scholar
  12. Honda, K. 1990. GC-MS and13C-NMR studies on the biosynthesis of terpenoid defensive secretions by the larvae of papilionid butterflies (Luehdorfia and Papilio).Insect Biochem. 20:245–250.Google Scholar
  13. López, A., andQuesnel, V.C. 1970. Defensive secretions of some papilionid caterpillars.Carib. J. Sci. 10:5–7.Google Scholar
  14. Miller, J.S. 1987. Phylogenetic studies in the Papilioninae (Lepidoptera: Papilionidae).Bull. Am. Mus. Nat. Hist. 186:365–512.Google Scholar
  15. Nishida, R., andFukami, H. 1989. Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous, to aristolochic acids.J. Chem. Ecol. 15:2549–2563.Google Scholar
  16. Nishida, R., Weintraub, J.D., Feeny, P., andFukami, H. 1993. Aristolochic acids fromThottea spp. (Aristolochiaceae) and the osmeterial secretions ofThottea-feeding troidine swallowtail larvae (Papilionidae).J. Chem. Ecol. 19:1587–1594.Google Scholar
  17. Seligman, I.M., andDoy, F.A. 1973. Biosynthesis of defensive secretions inPapilio aegeus.Insect Biochem. 3:205–215.Google Scholar
  18. Stenhagen, E., Abrahamsson, S., andMcLafferty, F.W. 1974. Registry of Mass Spectral Data. John Wiley, New York. pp. 999–1032.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Keiichi Honda
    • 1
  • Nanao Hayashi
    • 1
  1. 1.Study of Environmental Sciences Faculty of Integrated Arts and SciencesHiroshima UniversityHigashihiroshimaJapan

Personalised recommendations