Lasers in Medical Science

, Volume 1, Issue 1, pp 47–66 | Cite as

Photophysical processes in recent medical laser developments: A review

  • Jean-Luc Boulnois


A single diagram, encompassing most medical applications for all types of laser in current use, forms the basis of this review of recent medical developments. Emphasis is placed on the physical processes that govern different microscopic mechanisms of laser-tissue interaction. Four distinct photophysical groups are considered in a general classification of these specific modes of interaction: for continuous wave exposure, the photothermal and the photochemical transformations; and, for pulsed irradiations, the electromechanical and the photoablative processes.

Key words

Photomedicine Photobiology Photoablative Photochemical Photothermal Electromechanical Lasers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldman L, Rockwell J, Jr.Lasers in Medicine. New York: Gordon and Breach, 1971Google Scholar
  2. 2.
    Adey WR. Tissue interactions with nonionizing electromagnetic radiation.Physiol Rev 1981,61:435PubMedGoogle Scholar
  3. 3.
    Hayes JR, Wolbharsht ML. Models in pathology — mechanisms of action of laser energy with biological tissues. In: Wolbharsht ML (ed)Laser Applications in Medicine and Biology, Vol 1. New York: Plenum, 1975: Chap 1Google Scholar
  4. 4.
    Pratesi R, Sacchi CA (eds)Lasers in Photomedicine and Photobiology, New York: Springer, 1980Google Scholar
  5. 5.
    Regan JD, Parrish JA.Science of Photomedicine. New York: Plenum, 1982Google Scholar
  6. 6.
    Grandolfo M, Michaelson SM, Rindi A (eds)Biological Effects and Dosimetry of Nonionizing Radiation. New York: Plenum, 1983Google Scholar
  7. 7.
    Parrish JA, Deutsch JF. Laser photomedicine.IEEE (Inst Electr Electron Eng) J Quantum Electron QE 20 1984,12:1386CrossRefGoogle Scholar
  8. 8.
    Kaplan I (ed)Laser Surgery. Jerusalem: Academic, 1976Google Scholar
  9. 9.
    Spikes JD, Straight R. Sensitized photochemical processes in biological systems.Annu Rev Phys Chem 1967,18:409CrossRefGoogle Scholar
  10. 10.
    Diamond I, Granelli S, McDonaugh AF. Photodynamic therapy of malignant tumours.Lancet 1973, ii:1177Google Scholar
  11. 11.
    Dougherty TJ. Photoradiation therapy. Abstr Am Chem Soc Mtg, Chicago Il, September 1973:No 014Google Scholar
  12. 12.
    Aron-Rosa D, Aron J, Griesemann J, Thyzel R. Use of the Nd: YAG laser to open the posterior capsule after lens implant surgery.J Am Introcul Implant Soc 1980,6:352Google Scholar
  13. 13.
    Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea.J Ophthalmol 1983,96:710Google Scholar
  14. 14.
    Lane RJ, Linsker R, Wynne JJ et al. Ultraviolet-laser ablation of the skin.Lasers Surg Med 19844:201PubMedGoogle Scholar
  15. 15.
    Boulnois JL. A general classification of laser-tissue interactions.Lasers Surg Med 1985:in pressGoogle Scholar
  16. 16.
    Giese AC (ed)Photophysiology, Vol 6. New York: Academic, 1971Google Scholar
  17. 17.
    Smith KC. Photobiology of ultraviolet radiation. In: Pratesi R, Sacchi CA (eds)Lasers in Photomedicine and Photobiology. New York: Springer, 1980Google Scholar
  18. 18.
    Bond JW, Watson KM, Welch JA. In:Atomic Theory of Gas Dynamics. Massachussets: Addison-Wesley Reading, 1965Google Scholar
  19. 19.
    Parrish JA. New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window;J Invest Dermatol 1981,77:45CrossRefPubMedGoogle Scholar
  20. 20.
    Brunetaud JM, Mordon S, Bourez J et al. Therapeutic applications of lasers.Optical Fibers in the Biomedical Field (Proc SPIE 405) May 1985:2Google Scholar
  21. 21.
    van Gemert MC, Schets GA, Stassen EG, Bonnier JJ. Modelling of coronary laser angioplasty.Lasers Surg Med 19855:219PubMedGoogle Scholar
  22. 22.
    van Gemert MC, de Kleijn WJ, Hulsbergen JP. Temperature behavior of a model portwine stain during argon laser coagulation.Phys Med Biol 1982,27:1104Google Scholar
  23. 23.
    Welch AJ. The thermal response of laser-irradiated tissue.IEEE (Inst Elec Electron Eng) J Quantum Electron QE 20 1984,12:1471Google Scholar
  24. 24.
    Mordon S, Brunetaud JM, Mosquet L et al. Effets thermiques des lasers: étude par camera thermique infrarouge.Laser Médical. Opto 82. Paris: Masson 1984:58Google Scholar
  25. 25.
    L'Espérance FA.Ocular photocoagulation. Saint-Louis: Mosby, 1975Google Scholar
  26. 26.
    Little HL, Zweng HC, Peabody RR. Argon laser slit lamp retinal photocoagulation.Trans Am Acad Ophthalmol Oto-Laryngol 1970,74:85Google Scholar
  27. 27.
    Coscas G. Le laser à krypton en ophtalmologie: premiers essais expérimentaux et cliniques.Bull Mem Soc Fr Ophtalmol 1981,87:100Google Scholar
  28. 28.
    Karduck B, Richter MG, Blank M. Laserchirurgie des Stimmbandes.Laryngol Rhinol Otol 1978,57:419Google Scholar
  29. 29.
    Frêche C, Lotteau J, Abitbol J. Le laser en O.R.L.Concours Med 1979:2607Google Scholar
  30. 30.
    Toaff R. The CO2 laser in gynecological surgery. In: Kaplan I (ed)Laser Surgery. Jerusalem: Academic 1976Google Scholar
  31. 31.
    Kiefhaber P, Nath G, Moritz K. Endoscopical control of massive gastrointestinal hemorrhage by irradiation with a high-power neodymium-YAG laser.Prog Surg 1977: 140Google Scholar
  32. 32.
    Grotelüschen NB, Reilmann M, Bödecker V, Buchholz J. A high power Nd:YAG laser as a cutting tool in experimental surgery. In: Kaplan I (ed)Laser Surgery. Jerusalem: Academic 1976:167Google Scholar
  33. 33.
    Godlewski G, Miro L, Chevalier JM, Bureau JP. Experimental comparative study on morphological effects of different lasers on the liver.Res Exp Med 1982,180:51CrossRefGoogle Scholar
  34. 34.
    Bown SG, Salmon PR, Storey DW et al. Nd:YAG laser photocoagulation in the dog stomach.Gut 1980,21:818PubMedGoogle Scholar
  35. 35.
    Stachler G, Hofstetter A, Gorisch W et al. Endoscopy in experimental urology using argon-laser-beam.Endoscopy 1976,8:1PubMedGoogle Scholar
  36. 36.
    Toty L, Personne C, Colchen A, Vourc'h G. Bronchoscopic management of tracheal lesions using the Nd:YAG laser.Thorax 1981,36:175PubMedGoogle Scholar
  37. 37.
    Nims TA, McCaughan JS. Clinical experience with CO2 laser vaporisation of neoplasm.Lasers Surg Med 1983,3:265PubMedGoogle Scholar
  38. 38.
    Oshiro T. In: Oshiro T (ed)Laser treatments for nevi. Med Laser Res Co Ltd. Tokyo: Fukuin Printing Co, 1980Google Scholar
  39. 39.
    Carruth JAS. The minimal blanching power technique for the treatment of portwine stains with argon lasers. In: The Medical Laser. Present and Future. Second International Congress European Laser Association, Brussels, January 1985Google Scholar
  40. 40.
    Deutsch TF, Oseroff AR. New medical uses of lasers: a survey. Proc CLEO Baltimore, 1985:paper WF3Google Scholar
  41. 41.
    Macruz R, Martins JR, Tupinamba A et al. Therapeutic possibilities of laser beams in atheromas.Arq Bras Cardiol 1980,34:9PubMedGoogle Scholar
  42. 42.
    Choy DS, Sterzer SH, Rotterdam HZ et al. Transluminal laser catheter angioplasty.Am J Cardiol 1982,50:1206CrossRefPubMedGoogle Scholar
  43. 43.
    Ginsburg R, Kim DS, Guthaner D et al. Salvage of an ischemic limb by laser angioplasty: description of a new technique.Clin Cardiol 1984,7:54PubMedCrossRefGoogle Scholar
  44. 44.
    Abela GS, Cohen D, Feldman RL et al. Use of laser radiation to recanalize arteries in live rabbits.Clin Res 1983,31:458AGoogle Scholar
  45. 45.
    Case RB, Choy DS, Dwyer EM, Silvernail PJ. Absence of distal emboli during in vivo laser recanalization.Lasers Surg Med 1985,5:281PubMedGoogle Scholar
  46. 46.
    Geschwind H, Boussignac G, Tesseire B et al. Percutaneous transluminal laser angioplasty in man.Lancet 1984, i:844CrossRefGoogle Scholar
  47. 47.
    van Gemert M, Verdaasdonk R, Stassen EG et al. Optical properties of human blood vessel wall and plaque.Lasers Surg Med 1985,5:235PubMedGoogle Scholar
  48. 48.
    Berns MW, Mirhoseini M (eds) Special issue: Laser applications to occlusive vascular disease.Laser Surg Med 1985,5:3Google Scholar
  49. 49.
    Neblett C. History and future of tissue welding. Proc Congress Laser Neurosurg III 1984:64 (abstr)Google Scholar
  50. 50.
    Jain KK, Gorisch W. Repair of small blood vessels with the ND:YAG laser: a preliminary report.Surgery (St Louis) 1979,85:684Google Scholar
  51. 51.
    Krueger RR, Almquist EE. Argon laser coagulation of blood for the anastomosis of small vessels.Lasers Surg Med 1985,5:55PubMedGoogle Scholar
  52. 52.
    Serure A, Withers WH, Thomsen S, Morris J. Comparison of carbon dioxide laser-assisted microvascular anastomosis and conventional microvascular sutured anastomosis.Surg Forum 1983,34:634Google Scholar
  53. 53.
    Lynne C, Carter M, Morris J et al. Laser-assisted vas anastomosis: a preliminary report.Lasers Surg Med 1983,3:261PubMedGoogle Scholar
  54. 54.
    Quingley MR, Bailes J, Kwaan HC et al. Microvascular anastomosis using the milliwatt CO2 laser.Lasers Surg Med 1985,5:357PubMedGoogle Scholar
  55. 55.
    Tyrrell RM.Photochem Photobiol Rev 1977,3:35Google Scholar
  56. 56.
    Meyer HJ, Haverkampf K. Experimental study of partial liver resection with a combined CO2 and Nd: YAG laser.Lasers Surg Med 1982,2:149PubMedGoogle Scholar
  57. 57.
    Sultan R, Fallouh H, Lefevre-Villardebo M, Ladouch-Badre A. The combined use of Nd:YAG and CO2 lasers as a hemostatic knife in liver surgery. In: The Medical Laser: Present and Future. Second International Congress European Laser Association, Brussels, January 1985Google Scholar
  58. 58.
    Lasers Appl 1985,4:36, AugustGoogle Scholar
  59. 59.
    Svaasand LO, Doiron DR, Dougherty TJ. Temperature rise during photoradiation therapy of malignant tumors.Med Phys 198310:10CrossRefPubMedGoogle Scholar
  60. 60.
    Dougherty TJ. Hematoporphyrin as a photosensitizer of tumors.Photochem Photobiol 1983,38:377PubMedGoogle Scholar
  61. 61.
    Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor.Cancer Res 1976,36:2316Google Scholar
  62. 62.
    Bensasson R. La photochimiothérapie par l'hématoporphyrine. Introduction, mécanismes moléculaires. In:Laser Medical, Opto 1982. Paris:Masson, 1984:29Google Scholar
  63. 63.
    Policard A. Etudes sur les aspects offerts par les tumeurs expérimentales à la lumière de Wood.CR Seances Soc Biol Fil 1924,91:1423Google Scholar
  64. 64.
    Jori G. The molecular biology of photodynamic action. In: Pratesi R, Sacchi CA (eds)Lasers in Photomedicine and Photobiology. New York: Springer 1980Google Scholar
  65. 65.
    Andreoni A, Cubeddu A, de Silvestri S et al. Two-step laser activation of hematoporphyrin derivative.Chem Phys Lett 1982,88:37CrossRefGoogle Scholar
  66. 66.
    Dougherty TJ, Weishaupt KR, Boyle DG. Photodynamic therapy and cancer. In: DeVita VT et al (eds)Principles and Practice of Oncology. Philadelphia J.B. Lippincott, 1985Google Scholar
  67. 67.
    Moan J. Porphyrin-sensitized photodynamic inactivation of cells, a review.Lasers Med Sci 1986, 1:this volumeGoogle Scholar
  68. 68.
    Yanmashita M, Sato T, Aizawa K, Kato H. Picosecond fluorescence spectroscopy of hematoporphyrin derivative and related porphyrins. In: Eisenthal KB et al (eds)Picosecond phenomena III. New York: Springer (Springer Ser Chem Phys) 1980:298Google Scholar
  69. 69.
    Krinsky NI. In: Isler O (ed)Functions of carotenoids. Basel: Birkhauser, 1971:669Google Scholar
  70. 70.
    Mathews-Roth MM. Beta-carotenotherapy for erythropoietic protoporphyria and other photosensivity diseases, In: Regan JD, Parrish JA (eds)Science of Photomedicine New York: Plenum, 1982Google Scholar
  71. 71.
    Cowled C, Grace, Forbes. Comparison of the efficacy of pulsed and cw red laser light in induction of phototoxicity by haematoporphyrin derivative.Photochem Photobiol 1984,39:115PubMedGoogle Scholar
  72. 72.
    Berns MW, Coffey J, Wile AG. Laser photoradiation therapy of cancer: possible role of hyperthermia.Lasers Surg Med 1984,4:87PubMedGoogle Scholar
  73. 73.
    Waldow SM, Henderson BW, Dougherty TJ. Enhanced tumor control following sequential treatments of photodynamic therapy and localized microwave hyperthermia in vivo.Lasers Surg Med 1984,4:79PubMedGoogle Scholar
  74. 74.
    Mester E. Laser application in promoting wound healing. In: Koebner MK (ed)Lasers in Medicine. Chichester: Wiley, 1980Google Scholar
  75. 75.
    Oraevskii AN, Pleshanov PG. Biochemical effect of laser radiation,Sov J Quantum Electron 1981,12:1593Google Scholar
  76. 76.
    Karu TI, Kalenko GS, Letokhov VS, Labko W. Biological action of low-intensity visible light on HeLa cells as a function of the coherence, dose, wavelength, and irradiation regime.Sov J Quantum Electron 1982,9:1134 and 1983,9:1169Google Scholar
  77. 77.
    Lasers Appl 1985,4:36, MarchGoogle Scholar
  78. 78.
    Puliafito CA, Steinert RF. Short-pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations.IEEE (Inst Elect Electron Eng) J Quantum Electron 20 1984,12:1442CrossRefGoogle Scholar
  79. 79.
    Fradin DW, Bloembergen N, Letellier JP. Dependence of laser-induced breakdown field strength on plasma duration.Appl Phys Lett 1973,22:635CrossRefGoogle Scholar
  80. 80.
    Steinert RF, Puliafito CA, Trokel S. Plasma formation and shielding by three Nd:YAG lasers.Am J Ophthalmol 198396:427PubMedGoogle Scholar
  81. 81.
    Smith DC, Haught AF. Energy-loss processes in optical frequency gas breakdown.Phys Rev Lett 1966,16:1085CrossRefGoogle Scholar
  82. 82.
    Mitsak V, Saveskin V, Chernikiv V. Breakdown at optical frequencies in the presence of diffusion losses.JETP Lett 1966,4:88Google Scholar
  83. 83.
    Krokhin ON. Generation of high-temperature vapors and plasmas by laser radiation. In: Arecchi FT, Schulzdu-Bois EO (eds)Laser Handbook, Vol 2. Amsterdam: North-Holland 1972: 1371Google Scholar
  84. 84.
    Smith DC, Meyerand RG. Laser radiation induced gas breakdown. In: Bekefi G (ed)Principles of Laser Plasmas. Chichester: Wiley, 1976: 457Google Scholar
  85. 85.
    Sedov LI.Similarity and Dimensional Methods in Mechanics, Gostekhizadt. 4th edn, Moskow, 1957 (English Translation, Holt M (ed) New York: Academic Press, 1959)Google Scholar
  86. 86.
    Steinert RF, Puliafito CA, Kittrell C. Plasma shielding by Q-switched and mode-locked ND:YAG lasers.Ophthalmology 1983,90:1003PubMedGoogle Scholar
  87. 87.
    Bekefi G. Radiation Processes in Plasmas. New York: Wiley, 1966Google Scholar
  88. 88.
    Aron-Rosa D, Griesemann JC, Aron JJ. Use of a pulsed neodymium-YAG laser (picosecond) to open the posterior lens capsule in traumatic cataract: a preliminary report.Surgery (St Louis) 1981,12:496Google Scholar
  89. 89.
    Fankhauser F, Roussel P, Steffen J et al. Clinical studies on the efficiency of high power laser radiation upon some structures of the anterior segment of the eye.Int Ophthalmol 1981,3:129PubMedGoogle Scholar
  90. 90.
    Mayer G, Astier R, Englender J et al. Recanalization ‘invitro’ of atheromatous coronary arteries by short laser pulses. In: The Medical Laser: Present and Future. Second International Congress European Laser Association, Brussels January 1985Google Scholar
  91. 91.
    Berns MW, Gaster RN. Comeal incisions produced with the 4th harmonic (266 nm) of the Nd:YAG laser.Lasers Surg Med 1985,5:371PubMedGoogle Scholar
  92. 92.
    Srinivasan R, Mayne-Benton V, Self-developing photoetching of polyethylene terephthalate films by far-ultraviolet excimer laser radiation.Appl Phys Lett 1982,41:576CrossRefGoogle Scholar
  93. 93.
    Deutsch TF, Geis MW. Self-developing UV photoresist using excimer laser exposure.J Appl Phys 1983,54:7201CrossRefGoogle Scholar
  94. 94.
    Srinivasan R, Braren B, Seeger D et al. Comparative study of the photochemistry and the cutting (etching) of a synthetix polymer and bovine cornea by excimer radiation. Proc CLEO Baltimore, 1985: paper WL2Google Scholar
  95. 95.
    Rahman NK. Laser-induced photodissociation. (Colloque C1 in Collisions in a Laser Field)J Phys 1985,46:249Google Scholar

Copyright information

© Baillière Tindall 1986

Authors and Affiliations

  • Jean-Luc Boulnois
    • 1
  1. 1.QuantelLes Ulis-Orsay-CedexFrance

Personalised recommendations