Advertisement

Journal of Chemical Ecology

, Volume 22, Issue 5, pp 973–986 | Cite as

Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species

  • Anders Jäderlund
  • Olle Zackrisson
  • Marie-Charlotte Nilsson
Article

Abstract

Laboratory and greenhouse bioassays were used to test for inhibitory effects of senescent and decomposed leaves and aqueous extract from bilberry (Vaccinium myrtillus L.) against seed germination and seedling growth of aspen (Populus tremula L.), birch (Betula pendula Roth.), Scots pine (Pinus sylvestris L.), and Norway spruce [Picea abies (L.) Karst.]. Aqueous extracts from bilberry leaves were inhibitory to aspen seed germination and seedling growth and also induced root damage and growth abnormalities. Addition of activated carbon removed the inhibitory effects of extracts. Senescent leaves reduced pine and spruce seed germination, but rinsing of seeds reversed this inhibition. Senescent leaves were more inhibitory than decomposed leaf litter, suggesting that the inhibitory compounds in bilberry leaves are relatively soluble and released at early stages during decomposition. Spruce was generally less negatively affected by litter and aqueous extracts than the other tested species. This study indicates that chemical effects of bilberry litter have the potential to inhibit tree seedling recruitment, but these effects were not consistently strong. Phytotoxicity is unlikely to be of critical importance in determining success for spruce seedling establishment.

Key Words

Vaccinium myrtillus regeneration failure seed germination seedling establishment activated carbon germination inhibitors phenolic compounds Populus tremula Pinus sylvestris Picea abies Betula pendula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, J., Gensac, P., Pellissier, F., andTrosset, L. 1987. Régénération des peuplements d'épicéa en altitude: Recherches préliminaires sur le rôle de l'allélopatie et de la mycorhization dans les premiers stades du développement.Rev. Ecol. Biol. Sol. 24(3):301–310.Google Scholar
  2. Arnborg, T. 1943. Granberget. En växbiologisk undersökning av ett sydlapplänskt granskogsområde med särskild hänsyn till skogstyper och föryngring. Almqvist and Wiksell, Uppsala.Google Scholar
  3. Arnborg, T. 1990. Forest types of northern Sweden.Vegetatio 90:1–13.Google Scholar
  4. Blum, U., andRice, E. L. 1969. Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession.Bull. Torrey Bot. Club 96(5):531–544.Google Scholar
  5. Blum, U., Dalton, B. R., andRawlings, J. O. 1984. Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber.J. Chem. Ecol. 10(8):1169–1191.Google Scholar
  6. Blum, U., Dalton, B. R., andShann, J. R. 1985. Effects of ferulic andp-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH.J. Chem. Ecol. 11(11):1567–1582.Google Scholar
  7. Blum, U., Gerig, T. M., andWeed, S. B. 1989. Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials.J. Chem. Ecol. 15(10):2413–2423.Google Scholar
  8. Einhellig, F. A. 1987. Interactions among allelochemicals and other stress factors of the plant environment, pp. 343–357,in G. R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330. American Chemical Society, Washington, D.C.Google Scholar
  9. Eliasson, L. 1959. Inhibition of the growth of wheat roots in nutrient solutions by substances exuded from the roots.Kungl. Lantbrukshogsk. Ann. 25:285–293.Google Scholar
  10. Gallet, C., andLebreton, P. 1995. Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem.Soil Biol. Biochem. 27(2):157–165.Google Scholar
  11. Grime, J. P., andCurtis, A. V. 1976. The interaction of drought and mineral nutrient stress in calcareous grasslands.J. Ecol. 64:975–988.Google Scholar
  12. Grime, J. P., Hodgson, J. G., andHunt, R. 1988. Comparative Plant Ecology. Unwin Hyman, London.Google Scholar
  13. Havas, P., andKubin, E. 1983. Structure, growth and organic matter content in the vegetation of an old growth spruce forest in northern Finland.Ann. Bot. Fenn. 20:115–149.Google Scholar
  14. Kuiters, A. T., andDanneman, C. A. J. 1987. Water soluble phenolic substances in soils under several coniferous and deciduous tree species.Soil Biol. Biochem. 19(6):765–769.Google Scholar
  15. Kuuluvainen, T. 1994. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: A review.Ann. Zool. Fenn. 31:35–51.Google Scholar
  16. Kuusela, K. 1990. The Dynamics of Boreal Coniferous Forests. Sitra, Helsinki.Google Scholar
  17. Lehman, M. E., Blum, U., andGerig, T. M. 1994. Simultaneous effects of ferrulic andp-coumaric acids on cucumber leaf expansion in split-root experiments.J. Chem. Ecol. 20:1773–1782.Google Scholar
  18. Lehto, J. 1969. Studies conducted in northern Finland on regeneration of Scots pine by means of the seed tree and shelterwood methods (English summary).Commun. Inst. For. Fenn. 67:4.Google Scholar
  19. Lyu, S. W., Blum, U., Gerig, T. M., andO'Brien, T. E. 1990. Effects of mixtures of phenolic acid on phosphorus uptake by cucumber seedlings.J. Chem. Ecol. 16(8):2559–2567.Google Scholar
  20. Mahall, B. E., andCallaway, R. M. 1992. Root communication mechanisms and intracommunity distributions of two Mojave desert shrubs.Ecology 73(6):2145–2151.Google Scholar
  21. Nilsson, M.-C. 1992. The Mechanisms of Biological Interference byEmpetrum hermaphroditum on Tree Seedling Establishment in Boreal Forest Ecosystem. Dissertation 91-576-4640-6. Swedish University of Agricultural Sciences, Umeå, Sweden.Google Scholar
  22. Nilsson, M.-C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrubEmpetrum hermaphroditum Hagerup.Oecologia 98:1–7.Google Scholar
  23. Nilsson, M.-C., andZackrisson, O. 1992. Inhibition of Scots pine seedling establishment byEmpetrum hermaphroditum.J. Chem. Ecol. 18:1857–1870.Google Scholar
  24. Pellisier, F. 1993. Allelopathic inhibition of spruce germination.Acta Ecol. 14(2):211–218.Google Scholar
  25. Pellisier, F. 1994. Effects of phenolic compounds in humus on the natural regeneration of spruce.Phytochemistry 36(4):865–867.Google Scholar
  26. Pietikainen, J., andFritze, H. 1995. Clear-cutting and prescribed burning in coniferous forest: Comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification.Soil Biol. Biochem. 27(1):101–109.Google Scholar
  27. Rasmussen, J. A., andEinhellig, F. A. 1977. Synergistic inhibitory effects ofp-coumaric and ferulic acids on germination and growth of grain sorgum.J. Chem. Ecol. 3:197–205.Google Scholar
  28. Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press, Orlando, Florida.Google Scholar
  29. Rikala, R., andJozefek, H. J. 1990. Effects of dolomite lime and wood ash on peat substrate and development of tree seedlings.Silvia Fenn. 24(4):323–334.Google Scholar
  30. Schimmel, J. 1993. On Fire: Fire Behavior, Fuel Succession and Vegetation Response to Fire in the Boreal Forest. Dissertation 91-576-4753-4. Swedish University of Agricultural Sciences, Umeå, Sweden.Google Scholar
  31. Sarvas, R. 1950. Investigations into the natural regeneration of selectively cut private forests in northern Finland.Cumm. Inst. For. Fenn. 38:85–95.Google Scholar
  32. Sirén, G. 1955. The development of spruce forest on raw humus sites in northern Finland and its ecology.Acta For. Fenn. 62:1–363.Google Scholar
  33. Tallis, J. H. 1991. Plant Community History. Chapman and Hall, London.Google Scholar
  34. Tirén, L. 1949. Om den naturliga föryngringen på obrända hyggen i norrlänsk granskog.Medd. Statens Skogsforsk. Inst. Stockholm. 38(9):1–172.Google Scholar
  35. Viro, P. J. 1974. Effects of forest fire on soil, pp. 7–45.in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and Ecosystems. Academic press. New York.Google Scholar
  36. Walter, H., andBreckle, S. W. 1989. Temperate and Polar Zonobiomes of Northern Eurasia. Springer-Verlag. Berlin.Google Scholar
  37. Whitehead, D. C., Hazel, D., andHartley, R. D. 1983. Bound phenolic compounds in water extracts of soils, plant and leaf litter.Soil Biol. Biochem. 15(2):133–136.Google Scholar
  38. Williams, R. D., andHoagland, R. E. 1982. The effects of naturally occurring phenolic compounds on seed germination.Weed Sci. 30:206–212.Google Scholar
  39. Yambe, Y., Hori, Y., andTakeno, K. 1992. Genetic attributes of bracken as revealed by enzyme electrophoresis.Aust. Inst. Agric. Sci. Occas. Publ. 40:71–78.Google Scholar
  40. Zackrisson, O. 1977. Influence of forest fires on the north Swedish boreal forest.Oikos 29:22–32.Google Scholar
  41. Zackrisson, O. 1985. Some evolutionary aspects of life history characteristics of broadleaved tree species found in the boreal forests, pp. 17–36,in B. Hägglund and G. Peterson (eds.). Broadleaves in Boreal Silviculture—An Obstacle or an Asset?, Swedish University of Agricultural Science, Department of Silviculture Report No. 14.Google Scholar
  42. Zackrisson, O., andNilsson, M.-C. 1992. Allelopathic effects byEmpetrum hermaphroditum on seed germination of two boreal tree species.Can. J. For. Res. 22:1310–1319.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Anders Jäderlund
    • 1
  • Olle Zackrisson
    • 1
  • Marie-Charlotte Nilsson
    • 1
  1. 1.Faculty of Forestry, Department of Forest Vegetation EcologySwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations