Advertisement

Journal of Chemical Ecology

, Volume 22, Issue 5, pp 949–972 | Cite as

Male sex pheromone of a giant danaine butterfly,Idea leuconoe

  • R. Nishida
  • S. Schulz
  • C. S. Kim
  • H. Fukami
  • Y. Kuwahara
  • K. Honda
  • N. Hayashi
Article

Abstract

Males of a giant danaine butterfly,Idea leuconoe, display hairpencils during courtship. The females were visually attracted to and olfactorily arrested by an artificial butterfly model to which male hairpencil extracts were added. The hairpencil extracts contained a complex mixture of volatiles, including pyrrolizidine alkaloid (PA) derivatives (danaidone, viridifloric β-lactone), aromatics (phenol,p-cresol, benzoic acid), terpenoids (geranyl methyl thioether, (E,E)-farnesol), a series of γ-lactones (6-hydroxy-4-undecanolides and its homologs), hydrocarbons [(Z)-9-tricosene, etc.], and several compounds with higher molecular weight. A mixture of the major volatiles applied to a butterfly dummy strongly elicited an abdomen-curling acceptance posture in females. Viridifloric β-lactone and danaidone induced significant electroantennogram responses on the female's antennae, suggesting their principal role together with other hairpencil components as a sex pheromone to seduce females.I. leuconoe males seem to acquire the precursor for both of the PA fragments from the host plant,Parsonsia laevigata (Apocynaceae), during the larval stage; thereby they do not show pharmacophagous behavior towards PA-containing plants during the adult stage. However, males are pharmacophagously attracted to and feed on a number of simple phenolic compounds in a manner similar to other danaine species towards PAs. Wild males sequester one of the phagostimulants, (−)-mellein, in the hairpencils in varying quantities. Phenolic compounds incorporated in the hairpencils may act primarily as warning odors linked with the defensive PAs present in the body tissues.

Key Words

Lepidoptera Danainae Idea leuconoe hairpencil pheromone Parsonsia laevigata pyrrolizidine alkaloid mellein defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, F., andYamauchi, T. 1987. Parsonine, a pyrrolizidine alkaloid fromParsonsia laevigata.Chem. Pharm. Bull. 35:4661–4663.Google Scholar
  2. Abe, F., Nagao, T., Okabe, H., Yamauchi, T., Marubayashi, N., andUeda, I. 1990. Parsonsianine, a macrocyclic pyrrolizidine alkaloid from the leaves ofParsonsia laevigata (Studies onParsonsia. III).Chem. Pharm. Bull. 38:2127–2129.Google Scholar
  3. Abe, F., Yamauchi, T., Yaga, S., andMinato, K. 1991. Pyrrolizidine alkaloids fromParsonsia laevigata in Okinawa Island (Studies onParsonsia. V).Chem. Pharm. Bull. 39:1576–1577.Google Scholar
  4. Ackery, P. R., andVane-Wright, R. I. 1984. Milkweed Butterflies: Their Cladistics and Biology. Cornell University Press, New York.Google Scholar
  5. Aldridge, D. C., Galt, S., Giles, D., andTurner, W. B. 1971. Metabolites ofLasiodiplodia theobromae.J. Chem. Soc. C: 1971:1623–1627.Google Scholar
  6. Arakawa, H., Torimoto, N., andMasui, Y. 1969. Bestimmung der absoluten Konfiguration von Agrimonolid und Mellein.Liebigs Ann. Chem. 728:152–157.Google Scholar
  7. Attygalle, A. B., Siegel, B., Vostrowsky, O., Bestmann, H. J., andMaschwitz, U. 1989. Chemical composition and function of metapleural gland secretion of the ant,Crematogaster deformis Smith (Hymenoptera: Myrmicinae).J. Chem. Ecol. 15:317–328.Google Scholar
  8. Baker, T. C., Nishida, R., andRoelofs, W. L. 1981. Close range attraction of female Oriental fruit moths to herbal scent of male hairpencils.Science 214:1359–1361.Google Scholar
  9. Bestmann, H. J., Kern, F., Schaefer, D., andWitschel, M. C. 1992, 3,4-Dihydroisocoumarine, eine neue Klasse von Spurpheromonen bei Ameisen.Angew. Chem. 104:757–758.Google Scholar
  10. Blum, M. S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.Google Scholar
  11. Boppré, M. 1978. Chemical communication, plant relationships and mimicry in the evolution of danaid butterflies.Entomol. Exp. Appl. 24:64–77.Google Scholar
  12. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology.J. Chem. Ecol. 16:165–185.Google Scholar
  13. Brand, J. M., Fales, H. M., Sokoloski, F. A., MacConnell, J. G., Blum, M. S., andDuffeld, R. M. 1973. Identification of mellein in the mandibular gland secretion of carpenter ants.Life Sci. 13:201–211.PubMedGoogle Scholar
  14. Brower, L. P., Brower, J. W. Z., andCranston, F. P. 1965. Courtship behavior of the queen butterfly,Danaus gilippus berenice (Cramer).Zool. N.Y. 50:1–39.Google Scholar
  15. Edgar, J. A. 1982. Pyrrolizidine alkaloids sequestered by Solomon Island Danaine butterflies. The feeding preference of the Danainae and Ithomiinae.J. Zool. Soc. (London) 196:385–399.Google Scholar
  16. Edgar, J. A. 1984. Parsonsieae: Ancestral larval foodplants of the Danainae and Ithomiinae. pp. 91–93,in R. I. Vane Wright and P. R. Ackery (eds.). The Biology of Butterflies. Academic Press, London.Google Scholar
  17. Edgar, J. A., andCulvenor, C. C. J. 1975. Pyrrolizidine alkaloids inParsonsia species (family Apocynaceae) which attract danaid butterflies.Experientia 31:393–394.Google Scholar
  18. Edgar, J. A., Culvenor, C. C. J., andRobinson, G. S. 1973. Hairpencil dihydropyrrolizidines of Danainae from the New Hebrides.J. Aust. Entomol. Soc. 12:144–150.Google Scholar
  19. Edgar, J. A., Culvenor, C. C. J., andPliske, T. E. 1974. Coevolution of danaid butterflies with their host plants.Nature 250:646–648.PubMedGoogle Scholar
  20. Edgar, J. A., Culvenor, C. C. J., andPliske, T. E. 1976. Isolation of a lactone, structurally related to the esterifying acids of pyrrolizidone alkaloids, from the coastal fringes of male ithomiinae.J. Chem. Ecol. 2:263–270.Google Scholar
  21. Francis, G. W., andVeland, K. 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes.J. Chromatogr. 219:379–384.Google Scholar
  22. Francke, W., Bartels, J., Krohn, S., Schulz, S., Baader, E., Tengoe, J., andSchneider, D. 1989. Terpenoids from bark beetles, solitary bees and danaine butterflies.Pure Appl. Chem. 61:539–542.Google Scholar
  23. Kim, C. S., Nishida, R., Fukami, H., Abe, F. andYamauchi, T. 1994. 14-DeoxyparsonsianidineN-oxide: A pyrrolizidine alkaloid sequestered by the giant danaine butterfly,Idea leuconoe. Biosci. Biotech. Biochem. 58:980–981.Google Scholar
  24. Komae, H., Nishi, A., Yayashi, Wescou, C., andHayashi, N. 1982. Major components in the hairpencil secretions of danaid butterflies from Far East Asia.Biochem. Syst. Ecol. 10:181–183.Google Scholar
  25. Kunesch, G., andZagatti, P. 1987. A fungal metabolite as the male wing gland pheromone of the bumble-bee wax moth,Aphomia sociella L.Z. Naturforsch. 42c:657–659.Google Scholar
  26. Lloyd, H. A., Blum, M. S., Snelling, R. R., andEvans, S. L. 1989. Chemistry of mandibular and Dufour's gland secretions of ants in genusMyrmecocyastus.J. Chem. Ecol. 15:2589–2599.Google Scholar
  27. Matsumoto, M. 1994. 2′-Hydroxy-4′-methoxyacetophenone (paeonol) inExacum affine cv.Biosci. Biotech. Biochem. 58:1892–1893.Google Scholar
  28. Matsumoto, M., andNago, H. 1994. (R)-2-Octeno-δ-lactone and other volatiles produced byLasiodiplodia theobromae.Biosci. Biotech. Biochem. 58:1262–1266.Google Scholar
  29. Meinwald, J., Meinwald, Y. C., Wheeler, J. W., Eisner, T., andBrower, L. P. 1966. Major components in the exocrine secretion of a male butterfly (Lycorea).Science 151:583–585.Google Scholar
  30. Meinwald, J., Meinwald, Y. C., andMazzocchi, P. H. 1969. Sex pheromone of the queen butterfly: Chemistry.Science 164:1174–1175.Google Scholar
  31. Nago, H., andMatsumoto, M. 1994. An ecological role of volatiles produced byLasiodiplodia theobromae.Biosci. Biotech. Biochem. 58:1267–1272.Google Scholar
  32. Nishida, R., Baker, T. C., andRoelofs, W. L. 1982. Hairpencil pheromone components of male Oriental fruit moth,Grapholitha molesta.J. Chem. Ecol. 8:947–959.Google Scholar
  33. Nishida, R., Fukami, H., Baker, T. C., Roelofs, W. L., andAcree, T. E., 1985. Oriental fruit moth pheromone: Attraction of females by an herbal essence, pp. 47–63,in T. E. Acree and D. M. Soderlund (eds.). Semiochemistry: Flavors and Pheromones. Walter de Gruyter, Berlin.Google Scholar
  34. Nishida, R., Kim, C. S., Kawai, K., andFukami, H. 1990. Methyl hydroxybenzoates as potent phagostimulants for a male danaid butterfly,Idea leuconoe. Chem. Express. 5:497–500.Google Scholar
  35. Nishida, R., Kim, C. S., Fukami, H., andIrie, R. 1991. IdeamineN-oxides: Pyrrolizidine alkaloids sequestered by a danaine butterfly,Idea leuconoe. Agric. Biol. Chem. 55:1787–1797.Google Scholar
  36. Petty, R. L., Boppré, M., Schneider, D., andMeinwald, J. 1977. Identification and localization of volatile hairpencil components in maleAmauris ochlea butterflies (Danaidae).Experientia 33:1324–1326.Google Scholar
  37. Pliske, T. E., andEisner, T. 1969. Sex pheromone of the queen butterfly: Biology.Science 164:1170–1172.Google Scholar
  38. Roelofs, W. L., andComeau, A. 1971. Sex pheromone perception: Electroantennogram responses of the red-banded leaf roller moth.J. Insect Physiol. 36:619–624.Google Scholar
  39. Schneider, D., Boppre, M., Schneider, H., Thompson, W. R., Boriack, C. J., Petty, R. L., andMeinwald, J. 1975. A pheromone precursor and its uptake in maleDanaus butterflies.J. Comp. Physiol. 97:245–256.Google Scholar
  40. Schulz, S. 1992. Absolute configuration and synthesis of 2-hydroxy-2-(1-hydroxyethyl)-3-methyl-γ-butyrolactone, a presumed pheromone of ithomiine butterflies.Liebigs Ann. Chem. 829–834.Google Scholar
  41. Schulz, S. andNishida, R. 1996. Composition of the pheromone system of the male danaine butterfly,Idea leuconoe. Bioorg. Med. Chem., 3:341–349.Google Scholar
  42. Schulz, S., Francke, W., Edgar, J., andSchneider, D. 1988. Volatile compounds from androconial organs of danaine and ithomiine butterflies,Z. Naturforsch. 43c:99–104.Google Scholar
  43. Schulz, S., Boppré, M., andVane-Wright, R. I. 1993. Specific mixture of secretions from male scent organs of African milkweed butterflies (Danainae).Phil. Trans. R. Soc. London B 342:161–181.Google Scholar
  44. Sondheimer, E. 1957. The isolation and identification of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin from carrots.J. Am. Chem. Soc. 79:5036–5039.Google Scholar
  45. Trigo, J. R., andBrown, K. S. Jr. 1990. Variation of pyrrolizidine alkaloids in Ithomiinae: A comparative study between species feeding on Apocynaceae and Solanaceae.Chemoecology 1:22–29.Google Scholar
  46. Yubata, T., andSumiki, Y. 1933. Ochracin, a new metabolic product ofAspergillus ochraceus.J. Agric. Chem. Soc. Jpn. 9:1264–1275.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • R. Nishida
    • 1
  • S. Schulz
    • 2
  • C. S. Kim
    • 3
  • H. Fukami
    • 4
  • Y. Kuwahara
    • 1
  • K. Honda
    • 5
  • N. Hayashi
    • 5
  1. 1.Pesticide Research InstituteKyoto UniversityKyotoJapan
  2. 2.Institut für Organische ChemieUniversität HamburgHamburgGermany
  3. 3.Department of Bioresources Science, Faculty of AgricultureKochi UniversityNankoku, KochiJapan
  4. 4.Faculty of Sciences and EngineeringRitsumeikan UniversityNoji, KusatsuJapan
  5. 5.Faculty of Integrated Arts and SciencesHiroshima UniversityHigashihiroshimaJapan

Personalised recommendations