Communications in Mathematical Physics

, Volume 85, Issue 1, pp 49–71 | Cite as

The physical state space of quantum electrodynamics

  • Detlev Buchholz


Starting from the fact that electrically charged particles are massive, we derive a criterion which characterizes the state space of quantum electrodynamics. This criterion clarifies the special role of the electric charge amongst the uncountably many superselection rules in quantum electrodynamics and provides a basis for a general analysis of the infrared problem. Within this framework we establish the existence of asymptotic electromagnetic fields in all charge-sectors, find a general characterization of infra-particles and introduce a notion of asymptotic completeness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jauch, J.M., Rohrlich, F.: The theory of photons and electrons. Berlin, Heidelberg, New York: Springer 1976CrossRefGoogle Scholar
  2. 2.
    Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics. I. Commun. Math. Phys.23, 199 (1971)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Strocchi, F., Wightman, A.S.: Proof of the charge superselection rule in local relativistic quantum field theory. J. Math. Phys.15, 2198 (1974)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Fröhlich, J., Morchio, G., Strocchi, F.: Infrared problem and spontaneous breaking of the Lorentz group in QED. Phys. Lett.89B, 61 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    Symanzik, K.: Lectures on Lagrangian quantum field theory. DESYT-71Google Scholar
  6. 6.
    Haag, R., Kastler, D.: An algebraic approach to field theory. J. Math. Phys.5, 848 (1964)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borchers, H.J., Buchholz, D.: To be published. For a sketch of the proof see [17]Google Scholar
  8. 8.
    Bisognano, J.J., Wichmann, E.: On the duality condition for a hermitean scalar field. J. Math. Phys.16, 985 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Haag, R.: Lille Conference 1957 «Les problèmes mathématiques de la théorie quantique des champs». Paris: Editions du CNRS 1959Google Scholar
  10. 10.
    Borchers, H.J.: Energy and momentum as observables in quantum field theory. Commun. Math. Phys.2, 49 (1966)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sakai, S.:C*-algebras andW*-algebras. Berlin, Heidelberg, New York: Springer 1971CrossRefGoogle Scholar
  12. 12.
    Buchholz, D.: Collision theory for massless Bosons. Commun. Math. Phys.52, 147 (1977)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Borchers, H.J.: A remark on a theorem of B. Misra. Commun. Math. Phys.4, 315 (1967)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Borchers, H.J.: On the converse of the Reeh-Schlieder theorem. Commun. Math. Phys.10, 269 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Borchers, H.J.: On groups of automorphisms with semi-bounded spectrum. Paris: Editions du CNRS No. 181, 1970Google Scholar
  16. 16.
    Sadowski, P., Woronowicz, S.L.: Total sets in quantum field theory. Rep. Math. Phys.2, 113 (1971)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys.84, 1–54 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kraus, K., Polley, L., Reents, G.: Models for infrared dynamics. I. Classical currents. Ann. Inst. H. Poincaré26, 109 (1977)ADSMathSciNetGoogle Scholar
  19. 19.
    Schroer, B.: Infrateilchen in der Quantenfeldtheorie. Fortschr. Physik11, 1 (1963)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Araki, H., Haag, R.: Collision cross sections in terms of local observables. Commun. Math. Phys.4, 77 (1967)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Buchholz, D.: In: “Proceedings of the international conference on operator algebras, ideals and their applications in theoretical physics, Leipzig 1977”. Leipzig: Teubner 1978Google Scholar
  22. 22.
    Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless scalar Bosons. Ann. Inst. H. Poincaré19, 1 (1973)MathSciNetMATHGoogle Scholar
  23. 22a.
    Fröhlich, J., Morchio, G., Strocchi, F.: Charged sectors and scattering states in quantum electrodynamics. Ann. Phys.119, 241 (1979)ADSMathSciNetCrossRefGoogle Scholar
  24. 23.
    Roepstorff, G.: Coherent photon states and spectral condition. Commun. Math. Phys.19, 301 (1970)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 24.
    Gervais, J.L., Zwanziger, D.: Derivation from first principles of the infrared structure of quantum electrodynamics. Phys. Lett.94B, 389 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Detlev Buchholz
    • 1
  1. 1.II. Institute of Theoretical PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations