Advertisement

Communications in Mathematical Physics

, Volume 85, Issue 1, pp 39–48 | Cite as

Topology of lattice gauge fields

  • M. Lüscher
Article

Abstract

Non-Abelian gauge fields on a four-dimensional hypercubic lattice with small action density [Tr{U(\(\dot p\))} for SU(2) gauge fields] are shown to carry an integer topological chargeQ, which is invariant under continuous deformations of the field. A concrete expression forQ is given and it is verified thatQ reduces to the familiar Chern number in the classical continuum limit.

Keywords

Gauge Field Topological Charge Transition Matrice Parallel Transporter Principal Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Phys. Lett.59B, 85 (1975)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    DiVecchia, P., Nicodemi, F., Pettorino, R., Veneziano, G.: Nucl. Phys. B181, 318 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    Wilson, K.G.: Phys. Rev. D14, 2455 (1974); for reviews see e.g.Google Scholar
  4. 3a.
    Kadanoff, L.P.: Rev. Mod. Phys.49, 267 (1977)ADSMathSciNetCrossRefGoogle Scholar
  5. 3b.
    Drouffe, J.M., Itzykson, C.: Phys. Rep.38C, 133 (1978)ADSMathSciNetCrossRefGoogle Scholar
  6. 4.
    Berg, B., Lüscher, M.: Nucl. Phys. B190, [FS], 412 (1981)ADSCrossRefGoogle Scholar
  7. 4a.
    Lüscher, M.: Nucl. Phys. B200, [FS4] 61 (1982)ADSCrossRefGoogle Scholar
  8. 5.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. I. New York: Interscience 1963zbMATHGoogle Scholar
  9. 6.
    Colella, P., Lanford, O.E., III: Constructive quantum field theory. Velo, G., Wightman, A. (eds.). In: Lecture Notes in Physics, Vol. 25. Berlin, Heidelberg, New York: Springer 1973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Lüscher
    • 1
  1. 1.Institut für Theoretische PhysikUniversität BernBernSwitzerland

Personalised recommendations