Journal of Chemical Ecology

, Volume 22, Issue 10, pp 1921–1937 | Cite as

Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+,K+-ATPase

  • F. Holzinger
  • M. Wink


The Monarch butterfly (Danaus plexippus) sequesters cardiac glycosides (CG) for its chemical defense against predators. Larvae and adults of this butterfly are insensitive towards dietary cardiac glycosides, whereas other Lepidoptera are sensitive and intoxicated by ouabain. Ouabain inhibits Na+,K+-ATPase by binding to its α-subunit. We have amplified and cloned the DNA-sequence encoding the respective ouabain binding site. Instead of the amino acid asparagine at position 122 in ouabain-sensitive insects, the Monarch has a histidine in the putative ouabain binding site, which consists of 12 amino acids. Starting with the CG-sensitive Na+,K+-ATPase gene fromDrosophila, we converted pos. 122 to a histidine residue as inDanaus plexippus by site-directed mutagenesis. Human embryonic kidney cells (HEK) (which are sensitive to ouabain) were transfected with the mutated Na+,K+-ATPase gene in a pSVDF-expression vector and showed a transient expression of the mutatedDrosophila Na+,K+-ATPase. When treated with ouabain, the transfected cells tolerated ouabain at a concentration of 50 mM, whereas untransformed controls or controls transfected with the unmutatedDrosophila gene, showed a substantial mortality. This result implies that the asparagine to histidine exchange contributes to ouabain insensitivity in the Monarch. In two other CG-sequestering insects, e.g.,Danaus gilippus andSyntomeida epilais, the pattern of amino acid substitution differed, indicating that the Monarch has acquired this mutation independently during evolution.

Key Words

Danaus plexippus Danaus gilippus Syntomeida epilais Syntomis mogadorensis cardiac glycosides Na+,K+-ATPase target site modification insensitivity amino acid substitution sequestration gene expression site-directed mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askew, G. R., andLingrel, J. B. 1994. Identification of an amino acid substitution in human Na,K-ATPase which confers differentially reduced affinity for two related cardiac glycosides.J. Biol. Chem. 269:24120–24126.PubMedGoogle Scholar
  2. Bernays, E. A. andChapman, R. F. 1994.Host-plant selection by phytophagous insects. Chapman & Hall, New York.Google Scholar
  3. Brower, L. P. 1984. Chemical defence in butterflies. The biology of butterflies.Symp. R. Entomol. Soc. London 11:109–134.Google Scholar
  4. Brower, L. P., andFink, L. S. 1985. A natural defence system in butterflies vs birds.Ann. N.Y. Acad. Sci. 443:171–186.PubMedGoogle Scholar
  5. Brower, L. P., andGlazier, S. C. 1975. Localizations of heart poisons in the monarch butterfly.Science 188:19–25.Google Scholar
  6. Brower, L. P., andMoffit, C. M. 1974. Palatability dynamics of cardenolides in the monarch butterfly.Nature 249:280–283.Google Scholar
  7. Brower, L. P., andVan Zandt Brower, J. 1964. Birds, butterflies and plant poisons: A study in ecological chemistry.Zoologica 49:137–159.Google Scholar
  8. Brower, L. P., Ryerson, W. N., Coppinger, L. L., andGlazier, S. C. 1968. Ecological chemistry and the palatability spectrum.Science, 161:1349–1351.Google Scholar
  9. Brower, L. P., McEvoy, P. B., Williams, K. L., andFlannary, M. A. 1972. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.Science 177:426–429.PubMedGoogle Scholar
  10. Brower, L. P., Edmunds, M., andMoffitt, C. M. 1975. Cardenolide content and palatability of a population ofDanaus chrysippus butterflies from West Africa.J. Entomol. 49:183–196.Google Scholar
  11. Brower, L. P., Seiber, N. J., Nelson, C. J., Lynch, S. P., andTuskes, P. M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California.J. Chem. Ecol. 8:579–633.Google Scholar
  12. Brower, L. P., Nelson, C. L., Fink, L. S., Seiber, J. N., andBond, C. 1988. Exaption as an alternative to coevolution in the cardenolide-based chemical defence of monarch butterflies (Danaus plexippus L:) against avian predators, pp. 447–475,in K. C. Spencer, (ed.). Chemical mediation of coevolution Academic Press, New York.Google Scholar
  13. Brown, K. S., andTrigo, J. R. 1995. The ecological activity of alkaloids.In G. Cordell (ed.),The Alkaloids. Vol. 47, pp. 227–354. Academic Press, New York.Google Scholar
  14. Canessa, C. M., Horisberger, J.-D., Louvard, D. andRossier, B. C. 1992. Mutation of a cysteine in the first transmembrane segment of Na,K-ATPase subunit confers ouabain resistance.EMBO J. 11:1681–1687.PubMedGoogle Scholar
  15. Chen, C. andOkayama, H., 1987, High-efficiency transformation of mammalian cells by plasmid DNA.Mol. Cell. Biol. 7:2745–2752.PubMedGoogle Scholar
  16. Cohen, J. A. 1985. Differences and similarities in cardenolide content of queen and monarch butterflies in Florida and their ecological and evolutionary implications.J. Chem. Ecol. 11:85–103.Google Scholar
  17. Detzel, A., andWink, M. 1995. Evidence for a cardenolide carrier inOncopeltus fasciatus (Dallas) (Insecta: Hemiptera).Z. Naturforsch. 50c:127–134.Google Scholar
  18. Doyle, J. andDoyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13–15.Google Scholar
  19. Duffey, S. S., andScudder, G. G. E. 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera.J. Insect Physiol. 18:63–78.Google Scholar
  20. Eaton, D. L., Wood, W. I., Eaton, D., Hass, P. E., Hollingshead, P., Wion, K., Mather, J., Lawn, R. M., Vehar, G. A., andGorman, C. 1986. Construction and characterization of an active factor VIII variant lacking the central one-third of the molecule.Biochemistry 25:8343–8347.PubMedGoogle Scholar
  21. Emery, A. M., Ready, P. D., Billingsley, P. F., andDjamgoz, M. B. A. 1995. A single isoform of the Na+-K+-ATPase alpha-subunit in Diptera: Evidence from characterization of the first extracellular domain.Insect Mol. Biol. 4:179–192.PubMedGoogle Scholar
  22. Euw, von J., Reichstein, T., andRothschild, M. 1967. Cardenolides (heart poisons) in a grasshopper feeding on milkweeds.Nature 214:35–39.PubMedGoogle Scholar
  23. Euw, von J., Reichstein, T., andRothschild, M. 1971. Cardenolides (heart poisons) in the Lygaeid bugsCaenocoris nerii andSpilostethus pandurus.Insect Biochem. 1:373–384.Google Scholar
  24. Fink, L. S., andBrower, L. P. 1981. Birds can overcome the cardenolide defence of monarch butterflies in Mexico.Nature 291:67–70.Google Scholar
  25. Frick, C., andWink, M. 1995. Uptake and sequestration of ouabain and other cardiac glycosides inDanaus plexippus (Lepidoptera: Danaidae): Evidence for a carrier-mediated process.J. Chem. Ecol. 21:557–575.Google Scholar
  26. Glendinning, J. I. 1992. Effectiveness of cardenolides as feeding deterrents to Peromyscus MiceJ. Chem. Ecol. 18:1559–1575.Google Scholar
  27. Glendinning, J. I. 1990. Responses of the three mouse species to deterrent chemicals in the monarch butterfly. II. Taste tests using intact monarchs.Chemoecology 1:124–130.Google Scholar
  28. Groeneveld, H. W., Steijl, H., van den Berg, B., andElings, J. C. 1990. Rapid, quantitative HPLC analysis ofAsclepias fruticosa L. andDanaus plexippus L. cardenolides.J. Chem. Ecol. 16:3373–3382.Google Scholar
  29. Harborne, J. B. 1993.Introduction to ecological biochemistry. 4th ed. Academic press, London.Google Scholar
  30. Higuchi, R., Krummel, B., andSaiki, R. K. 1988. A general method ofin vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.PubMedGoogle Scholar
  31. Holzinger, F., Frick, C., andWink, M. 1992. Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides.FEBS Lett. 314:477–480.PubMedGoogle Scholar
  32. Jaisser, F., Canessa, C. M., Horisberger, J.-D., andRossier, B. C. 1992. Primary sequence and functional expression of a novel ouabain-resistant Na,K-ATPase.J. Biol. Chem. 24:16895–16903.Google Scholar
  33. Lingrel, J. B., Orlowski, J., Shull, M. M., andPrice, E. M. 1990. Molecular genetics of Na,K-ATPase.Progr. Nucl. Acid. Res. Mol. Biol. 38:37–87.Google Scholar
  34. Lynch, S. P., andMartin, R. A. 1987. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias viridis WALT. in northwestern Louisiana.J. Chem. Ecol. 13:47–70.Google Scholar
  35. Malcolm, S. B. 1990. Chemical defence in chewing and sucking insect herbivores: plant derived cardenolides in the Monarch butterfly and oleander aphid.Chemoecology, 1:12–21.Google Scholar
  36. Malcolm, S. B., andBrower, L. P. 1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly.Experientia 45:284–295.Google Scholar
  37. Malcolm, S. B., Cockrell, B. J., andBrower, L. P. 1989. Cardenolide fingerprint of monarch butterflies reared on common milkweed,Asclepias syriaca L.J. Chem. Ecol. 15:819–853.Google Scholar
  38. Martin, R. A., andLynch, S. P. 1988. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias asperula subsp. capricornu WOODS., in north central Texas.J. Chem. Ecol. 14:295–318.Google Scholar
  39. Neuwinger, H.-D. 1994. Afrikanische Arzneipflanzen und Jagdgifte. Wiss. Verlagsges., Stuttgart.Google Scholar
  40. Nickisch-Rosenegk von, E., Detzel, A., Wink, M., andSchneider, D. 1990. Carrier-mediated uptake of digoxin by larvae of the cardenolide sequestering mothSyntomeida epilais.Naturwissenschaften 77:336–338.Google Scholar
  41. Reichstein, T., Von Euw, J., Parsons, J. A., andRothschild, M. 1968. Heart poisons in the monarch butterfly.Science 161:861–866.PubMedGoogle Scholar
  42. Ritland, D. B. 1991. Palatability of aposematic queen butterflies (Danaus gilippus) feeding onSarcostemma clausum (Asclepiadaceae) in Florida.J. Chem. Ecol. 17:1593–1610.Google Scholar
  43. Roeske, C. N., Seiber, J. N., Brower, L. P., andMoffitt, C. M. 1976. Milkweed cardenolides and their comparative processing by monarch butterflies.Recent Adv. Phytochem. 10:93–167.Google Scholar
  44. Rosenthal, G. A., andBerenbaum, M. R. 1991.Herbivores. Their interactions with secondary plant metabolites. 2nd ed. Academic Press, San Diego.Google Scholar
  45. Rosenthal, G. A., andBerenbaum, M. R. 1992.Herbivores. Their interactions with secondary plant metabolites. 2 ed. Academic Press, San Diego.Google Scholar
  46. Rothschild, M. 1966. Experiments with captive predators and the poisonous grasshopperPoekilocerus bufonius.Proc. Royal Entomol. Soc. London, 31:32–33.Google Scholar
  47. Rothschild, M. 1972a. Colour and poisons in insect protection.New Scientist: 318–320.Google Scholar
  48. Rothschild, M. 1972b. Secondary plant substances and warning colouration in insects.In H. F. van Emden (ed.),Insect/Plant Relationships, Vol. 6, pp. 59–83. Blackwell, Oxford.Google Scholar
  49. Rothschild, M., Von Euw, J., andReichstein, T. 1970. Cardiac glycosides in the oleander aphid,Aphis nerii.J. Insect Physiol., 16:1141–1145.PubMedGoogle Scholar
  50. Rothschild, M., Von Euw, J., andReichstein, T. 1971. Heart poisons (cardiac glycosides) in the lygaeid bugsCaenocoris nerii andSpilostethus pandorus.Insect Biochem., 1:373–384.Google Scholar
  51. Rothschild, M., Von Euw, J., andReichstein, T. 1972. Some problems connected with warningly coloured insects and toxic defense mechanism.Mitteil. Basler Afrika Bibliographien, 4:135–138.Google Scholar
  52. Rothschild, M., Von Euw, J., andReichstein, T. 1973. Cardiac glycosides (heart poisons) in the polka-dot mothSyntomeida epilais Walk, with some observations on the toxic qualities ofAmata( =Syntomis)phegea.Proc. R. Soc. Lond. B., 183:227–247.PubMedGoogle Scholar
  53. Schultheis, P. J., Wallick, E. T., andLingrel, J. B. 1993. Kinetic analysis of ouabain binding to native and mutated forms of Na,K-ATPase and identification of a new region involved in cardiac glycoside interactions.J. Biol. Chem. 30:22686–22694.Google Scholar
  54. Scudder, G. G. E., Moore, L. V., andIsman, M. B. 1986. Sequestration of cardenolides inOncopeltus fasciatus: Morphological and physiological adaptations.J. Chem. Ecol. 12:1171–1187.Google Scholar
  55. Seiber, J. N., Tuskes, P. M., Brower, L. P., andNelson, C. J. 1980. Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.).J. Chem. Ecol. 6:321–339.Google Scholar
  56. Seiber, J. N., Brower, L. P., Lee, S. M., McChesney, M. M., Cheung, H. T. A., Nelson, C. J., andWatson, T. R. 1986. Cardenolide connection between overwintering monarch butterflies from Mexico and their larval food plant,Asclepias syriaca.J. Chem. Ecol. 12:1157–1170.Google Scholar
  57. Shull, G. E., Schwartz, A., andLingrel, J. B. 1985. Aminoacid sequence of the catalytic subunit of the Na,K-ATPase deduced from a complementary DNA.Nature 316:691–695.PubMedGoogle Scholar
  58. Takeyasu, K., Tamkun, M. M., andFambrough, D. M. 1987. Ouabain-sensitive Na+K+ ATPas activity expressed in mouse L-cells by transfection with DNA-encoding the α-subunit of an avian sodium pump.J. Biol. Chem. 263, 4347–4354.Google Scholar
  59. Teuscher, E., andLindequist, U. 1987.Biogene Gifte. Biologie-Chemie-Pharmakologie. G. Fischer, Stuttgart.Google Scholar
  60. Vaughan, G. L., andJungreis, A. M. 1977. Insensitivity of lepidopteran tissues to ouabain: Physiological mechanisms for protection from cardiac glycosides.J. Insect Physiol. 23:585–589.Google Scholar
  61. Wink, M. 1993. Allelochemical properties or the raison d'être of alkaloids. In G. A. Cordell (ed.),The Alkaloids, Vol. 43, pp. 1–118. Academic Press, San Diego.Google Scholar
  62. Wink, M., andSchneider, D. 1990. Fate of plant-derived secondary metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais andCreatonotos transiens).J. Comp. Physiol. B 160:389–400.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • F. Holzinger
    • 1
  • M. Wink
    • 1
  1. 1.Institut für Pharmazeutische BiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations