Advertisement

Mathematische Zeitschrift

, Volume 155, Issue 3, pp 249–276 | Cite as

On the wave equation on a compact Riemannian manifold without conjugate points

  • Pierre H. Bérard
Article

Keywords

Wave Equation Riemannian Manifold Conjugate Point Compact Riemannian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-C]
    Bishop, R., Crittenden, R.: Geometry of manifolds. Pure and Applied Math. New York: Academic Press 1964Google Scholar
  2. [BD]
    Bérard, P.: Sur la fonction spectrale du Laplacien d'une variété riemannienne compacte sans points conjugués. C. r. Acad. Sci., Paris, Sér.A283, 45–48 (1976)Google Scholar
  3. [B-G-M]
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété riemannienne. Lecture Note in Mathematics, 194. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  4. [C-E]
    Cheeger, J., Ebin, D.: Comparison theorems in Riemannian geometry. Amsterdam: North Holland 1975Google Scholar
  5. [CT1]
    Combet, E.: Paramétrix et invariants sur les variétés compactes. Ann. sci. École norm. sup., IV. Sér.3, 247–271 (1970)Google Scholar
  6. [CT2]
    Combet, E.: Solutions élémentaires des, dalembertiens généralisés. Mémorial des sciences mathématiques no CLX. Paris: Gauthier Villars 1965Google Scholar
  7. [CV1]
    Colin de Verdière, Y.: Spectre du laplacien et longueurs des géodésiques périodiques I. Compositio math.27, 86–106 (1973)Google Scholar
  8. [CV2]
    Colin de Verdière, Y.: Quasimodes sur les variétés riemanniennes. Preprint, Université Paris 7 (1976) to appear in Inventiones MathematicaeGoogle Scholar
  9. [CV3]
    Colin de Verdière, Y.: Paramétrix de l'équation des ondes et intégrales sur l'espace des chemins. Séminaire Goulaouic-Lions-Schwartz, exposé no 20, 1974–1975. Paris: École Polytechnique, Centre de Mathématiques 1975Google Scholar
  10. [D-G]
    Duistermaat, J., Guillemin, V.: The spectrum of positive elliptic operators and periodic bicharacteristics. Inventiones math.29, 39–79 (1975)Google Scholar
  11. [D-H]
    Duistermaat, J., Hörmander, L.: Fourier Integral operators II. Acta math.128, 183–269 (1972)Google Scholar
  12. [GN]
    Green, L.: Surfaces without conjugate points. Trans. Amer. math. Soc.76, 529–546 (1954)Google Scholar
  13. [GY]
    Gilkey, P.: The spectral geometry of real and complex manifolds. In: Differential Geometry. Proceedings of Symposia in Pure Mathematics. Vol.27, Part 2 (Stanford 1973), pp. 265–280. Providence: American Mathematical Society 1975Google Scholar
  14. [G-S]
    Gelfand, I., Shilov, G.: Generalized functions I. New York: Academic Press 1964Google Scholar
  15. [HD]
    Hadamard, J.: Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Paris: Hermann 1932Google Scholar
  16. [HR]
    Hörmander, L.: The spectral function of an elliptic operator. Acta math.121, 193–218 (1968).Google Scholar
  17. [RL]
    Randol, B.: The Riemann hypothesis for Selberg's zeta-functions and the asymptotic behavior of eigenvalues of the Laplace operator. Preprint, City University of New York. 1976Google Scholar
  18. [RZ]
    Riesz, M.: L'intégrale de Riemann-Liouville et le problème de Cauchy. Acta math.81, 1–223 (1949)Google Scholar
  19. [S-G-R]
    Séminaire de géométrie riemannienne. Université Paris 7 (1970–1971)Google Scholar
  20. [TR]
    Taylor, M.: Pseudo-differential operators. Lecture Note in Math. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  21. [TS]
    Trèves, F.: Basic linear partial differential equations. New York: Academic Press 1975Google Scholar
  22. [VG]
    Vainberg, B.: On a point source in an inhomogeneous medium. Math. USSR, Sbornik23, 123–148 (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Pierre H. Bérard
    • 1
  1. 1.Instituto de Matemática Pura e AplicadaRio de Janeiro-RJBrazil

Personalised recommendations