Advertisement

International Journal of Computer Vision

, Volume 13, Issue 3, pp 331–356 | Cite as

Review and analysis of solutions of the three point perspective pose estimation problem

  • Bert M. Haralick
  • Chung-Nan Lee
  • Karsten Ottenberg
  • Michael Nölle
Systems And Replication

Abstract

In this paper, the major direct solutions to the three point perspective pose estimation problems are reviewed from a unified perspective beginning with the first solution which was published in 1841 by a German mathematician, continuing through the solutions published in the German and then American photogrammetry literature, and most recently in the current computer vision literature. The numerical stability of these three point perspective solutions are also discussed. We show that even in case where the solution is not near the geometric unstable region, considerable care must be exercised in the calculation. Depending on the order of the substitutions utilized, the relative error can change over a thousand to one. This difference is due entirely to the way the calculations are performed and not due to any geometric structural instability of any problem instance. We present an analysis method which produces a numerically stable calculation.

Keywords

Image Processing Artificial Intelligence Relative Error Computer Vision Computer Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Church, “Revised Geometry of the Aerial Photograph,”Syracuse University Press, Bulletin 15, Syracuse, NY, 1945.Google Scholar
  2. E. Church, “Theory of Photogrammetry,”Syracuse University Press, Bulletin 19, Syracuse, NY, 1948.Google Scholar
  3. M. Dhome, M. Richetin, J. T. Lapreste and G. Rives, “The Inverse Perspective Problem from a Single View for Polyhedra Location,”IEEE Conference on Computer Vision and Pattern Recognition, 1988, pp. 61–68.Google Scholar
  4. S. Finsterwalder and W. Scheufele, “Das Rückwärtsein-schneiden im Raum”Sebastian Finsterwalder zum 75.Geburtstage, Verlag Herbert Wichmann, Berlin, Germany, 1937, pp. 86–100.Google Scholar
  5. M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,”Graphics and Image Processing, Vol. 24, No. 6, 1981, pp. 381–395.Google Scholar
  6. S. Ganapathy, “Decomposition of Transformation Matrices for Robot Vision, ”Proceeding of International Conf. on Robotics and automation, Rome, Italy, pp. 130–119, Nov., 1984.Google Scholar
  7. E. W. Grafarend, P. Lohse, and B. Schaffrin, “Dreidimensionaler Rückw ärtsschnitt Teil I: Die projektiven Gleichungen”Zeitschrift für Vermessungswesen, Geodätisches Institut, Universität Stuttgart, 1989, pp. 1–37.Google Scholar
  8. J. A. Grunert, “Das Pothenotische Problem in erweiterter Gestalt nebst Über seine Anwendungen in der Geodäsie,Grunerts Archiv für Mathematik und Physik, Band 1, 1841, pp. 238–248.Google Scholar
  9. R. M. Haralick, H. Joo, C. N. Lee, X. Zhuang, V.G. Vaidya, and M. B. Kim, “Pose Estimation from Corresponding Point Data,”IEEE Trans. on Systems, Man, and Cybernetics, Vol. 19, No. 6, Nov./Dec. 1989.Google Scholar
  10. B. K. P. Horn, “Closed-Form Solution of absolute Orientation Using Orthonormal Matrices,”J. Opt. Soc. Am. A, Vol. 5, No. 7, 1988, pp. 1127–1135.Google Scholar
  11. R. Horaud, “New Methods for Matching 3-D Objects with Single Perspective Views,”IEEE Transactions on the Pattern Analysis and Machine Intelligence, Volume PAMI-9, No. 3, May 1987.Google Scholar
  12. S. Linnainmaa, D. Harwood, and L. S. Davis, “Pose Estimation of a Three-Dimensional Object Using Triangle Pairs”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 5, 1988, pp. 634–647.CrossRefGoogle Scholar
  13. P. Lohse, “Dreidimensionaler Rückwärtsschnitt Ein Algorithmus zur Streckenberechnung ohne Hauptachsentransformation,”Geodätisches Institut, Universität Stuttgart, 1989.Google Scholar
  14. D. G. Lowe, “Three-Dimensional Object Recognition from Single Two-Dimensional Images,”Artificial Intelligence, Vol. 31, 1987, pp. 355–395.CrossRefGoogle Scholar
  15. E. L. Merritt, “Explicity Three-Point Resection in Space”Photogrammetric Engineering, Vol. XV, No. 4, 1949, pp. 649–655.Google Scholar
  16. E. L. Merritt, “General Explicit Equations for a Single Photograph”Analytical Photogrammetry, Pitman Publishing Corporation, New York, USA, pp. 43–79.Google Scholar
  17. F. J. Müller, “Direkte (exakte) Losung des einfachen Rückwartseinschneidens im Raume”Allgemeine Vermessungs-Nachrichten, 1925.Google Scholar
  18. P. H. Schonemann, and R.M. Caroll, “Fitting One Matrix to Another Under Choice of a Central Dilation and a Rigid Body Motion.”Psychometrika, 35(2):245–255, June 1970.Google Scholar
  19. P. H. Schonemann, “A Generalized Solution of the Orthogonal Procrustes Problem,”Psychometrika, 31(1):1–10, March 1966.Google Scholar
  20. G. H. Schut, “On Exact Linear Equations for the Computation of the Rotational Elements of Absolute Orientation,”Photogrammetria 16 (1), 1960, pp. 34–37.CrossRefGoogle Scholar
  21. C. C. Slama, ed., “Manual of Photogrammetry”American Society of Photogrammetry, Falls Church, Virginia, 1980.Google Scholar
  22. A.D.N. Smith, “The Explicit Solution of Single Picture Resection Problem with a Least Squares Adjustment to Redundant Control,”Photogrammetric Record, Vol. V, No. 26, October 1965, pp. 113–122.Google Scholar
  23. E.H. Thompson, “Space Resection: Failure Cases,”Photogrammetric Record, Vol. V, No. 27, April 1966, pp. 201–204.Google Scholar
  24. R.Y. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,”IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, 1987, pp. 323–344.Google Scholar
  25. J. Vlach and K. Singhal, “Computer Methods for Circuit Analysis and Design.” 1983.Google Scholar
  26. J.H. Wilkinson, “Rounding Errors in Algebraic Process.” H.M. Stationery Office, London; 1963.Google Scholar
  27. P.R. Wolf,Elements of Photogrammetry, McGraw Hill, New York, USA, 1974.Google Scholar
  28. W.J. Wolfe, D. Mathis, C.W. Sklair, and M. Magee, “The Perspective View of Three Points,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 1, 1991, pp. 66–73.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Bert M. Haralick
    • 1
  • Chung-Nan Lee
    • 2
  • Karsten Ottenberg
    • 3
  • Michael Nölle
    • 4
  1. 1.Intelligent Systems Laboratory, Department of Electrical Engineering FT-10University of WashingtonSeattleUSA
  2. 2.Institute of Information EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan 80424, ROC
  3. 3.Philips-ForschungslaborHamburg 54Germany
  4. 4.Technische Informatik ITechnische Universität Hamburg-HarburgHamburg 90Germany

Personalised recommendations