Advertisement

Journal of Chemical Ecology

, Volume 22, Issue 8, pp 1527–1539 | Cite as

The importance of sequestered iridoid glycosides as a defense against an ant predator

  • Lee A. Dyer
  • M. Deane Bowers
Article

Abstract

We reared larvae ofJunonia coenia Hubner (Nymphalidae) on artificial diets with trace concentrations of iridoid glycosides and on leaf diets with higher concentrations of iridoid glycosides. We offered these caterpillars to predacious ants and observed the effects of the following on predation: diet (artificial vs. leaf), site (ant colonies in dry vs. wet areas), instar (early vs. late), and time (changes in predation over five days). Diet and site were consistently significant predictors of the ants' propensities to reject prey and the caterpillars' abilities to escape predation. Leaf-diet caterpillars escaped more frequently than artificial-diet caterpillars, and ants from dry sites were more likely to reject prey than ants from wet sites. The percentage of iridoid glycosides found in individual caterpillars was also a good predictor of the probability of rejection by predators and prey escape. Caterpillars with higher levels of iridoids were more likely to be rejected and to escape, suggesting that sequestered iridoid glycosides are a defense against predaceous ants.

Key words

Predation iridoid glycosides Junonia coenia Formica planipiles Plantago lanceolata specialist herbivore larval defenses unpalatability sequestration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernays, E. A. 1988. Host specificity in phytophagous insects: Selection pressure from generalist predators.Entomol. Exp. Appl. 49:131–140.CrossRefGoogle Scholar
  2. Bernays, E. A., andCornelius, M. L. 1989. Generalist caterpillar prey are more palatable than specialists for the generalist predatorIridomyrmex humilis.Oecologia 79:427–430.CrossRefGoogle Scholar
  3. Bobbitt, J. M., andSegebarth, D. P. 1969. Iridoid glycosides and similar substances, pp. 1–145,in W. I. Taylor and A. R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Academic Press, New York.Google Scholar
  4. Bowers, M. D. 1984. Iridoid glycosides and host-plant specificity in larvae of the Buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 10:1567–1577.CrossRefGoogle Scholar
  5. Bowers, M. D. 1991. Iridoid glycosides, pp. 297–326,in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  6. Bowers, M. D. 1992. The evolution of unpalatability and the cost of chemical defense in insects, pp. 216–244,in B. D. Roitberg and M. B. Isman (eds.). Insect Chemical Ecology: An Evolutionary Approach. Chapman & Hall, New York.Google Scholar
  7. Bowers, M. D., andCollinge, S. K. 1992. Fate of iridoid glycosides in different life stages of the buckeye,Junonia coenia (Lepidoptera: Nymphalidae).J. Chem. Ecol. 18:317–331.Google Scholar
  8. Bowers, M. D., andLarin, Z. 1989. Acquired chemical defense in the lycaenid butterfly,Eumaeus atala.J. Chem. Ecol. 15:133–146.CrossRefGoogle Scholar
  9. Bowers, M. D., andStamp, N. E. 1993. Effects of plant age, genotype, and herbivory onPlantago performance and chemistry.Ecology 74:1778–1791.Google Scholar
  10. Brower, L. P. 1984. Chemical defense in butterflies, pp. 109–134,in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies: Symposium of the Royal Entomology Society Number 11. Academic Press, New York.Google Scholar
  11. Cherin, D., andBourne, J. D. 1980. A field-study on a supercolony of the red wood antFormica lugubris Zett. in relation to other predatory Arthropods (spiders, harvestmen and ants).Rev. Suisse Zool. 87:955–973.Google Scholar
  12. Christensen, R. 1990. Log-linear models. Springer-Verlag, New York.Google Scholar
  13. Dejean, A. 1988. Prey capture byCamponotus maculatus (Formicidae - Formicinae).Biol. Behav. 13:97–115.Google Scholar
  14. De la Fuente, M. A., Dyer, L. A. andBowers, M. D. 1994. The iridoid glycoside, catalpol, as a deterrent to the predatorCamponotus floridanus (Formicidae).Chemoecology 5:13–19.CrossRefGoogle Scholar
  15. Duff, R. B., Bacon, J. S. D., Mundie, C. M., Farmer, V. C., Russell, J. D., andForrester, A. R. 1965. Catalpol and methylcatalpol: Naturally occurring glycosides inPlantago andBuddleia species.Biochem. J. 96:1–5.PubMedGoogle Scholar
  16. Duffey, S. S. 1980. Sequestration of plant natural products by insects.Annu. Rev. Entomol. 25:447–477.CrossRefGoogle Scholar
  17. Dyer, L. A. 1995. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae.Ecology 76:1483–1496.Google Scholar
  18. Dyer, L. A., andFloyd, T. 1993. Determinants of predation on phytophagous insects: The importance of diet breadth.Oecologia 96:575–582.CrossRefGoogle Scholar
  19. Feinberg, S. E. 1970. The analysis of multidimensional contingency tables.Ecology 51:417–433.Google Scholar
  20. Gardner, D. R., andStermitz, F. R. 1988. Hostplant utilization and iridoid glycoside sequestration byEuphydryas anicia individuals and populations.J. Chem. Ecol. 15:2147–2168.CrossRefGoogle Scholar
  21. Hagen, K. S., Bombosch, S., andMcMurtry, J. A. 1976. The biology and impact of predators, pp. 93–142,in C. B. Huffaker and P. S. Messenger (eds.). Theory and Practice of Biological Control. Academic Press, New York.Google Scholar
  22. Hölldobler, B., andWilson, E. O. 1990. The Ants. Belknap Press, Cambridge, Massachusetts, p. 534.Google Scholar
  23. McIver, J. D. andLoomis, C. 1993. A size-distance relation in Homoptera-tending thatch ants (Formica obscuripes, Formica planipilis).Insectes Soc. 40:207–218.CrossRefGoogle Scholar
  24. Nishida, R., andFukami, H. 1989. Host plant iridoid-based chemical defense of an aphid,Acyrthosiphon nipponicus, against ladybird beetles.J. Chem. Ecol. 15:1837–1845.CrossRefGoogle Scholar
  25. Reavey, D. 1993. Why body size matters to caterpillars, pp. 248–279,in N. E. Stamp and T. M. Casey (eds.). Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman & Hall, New York.Google Scholar
  26. Rothschild, M. 1977. Storage of cannabinoids byArctia caja andZonocerus elegans fed on chemically distinct strains ofCannabis sativa.Nature 266:650–651.CrossRefPubMedGoogle Scholar
  27. Rothschild, M., Aplin, R. T., Cockrum, P. A., Edgar, J. A., Fairweather, P., andLees, R. 1979. Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae.Biol. J. Linn. Soc. 12:305–326.Google Scholar
  28. Skinner, G. J., andWhittaker, J. B. 1981. An experimental investigation of inter-relationships between the wood-ant (Formica rufa) and some tree-canopy herbivores.J. Anim. Ecol. 50:313–326.Google Scholar
  29. Stamp, N. E. 1992. Relative susceptibility to predation of two species of caterpillar on plantain.Oecologia 92:124–131.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Lee A. Dyer
    • 1
    • 2
  • M. Deane Bowers
    • 2
  1. 1.Biology DepartmentMesa State CollegeGrand Junction
  2. 2.University of Colorado Museum and Department of EPO BiologyUniversity of ColoradoBoulder

Personalised recommendations