Helgoländer Meeresuntersuchungen

, Volume 38, Issue 3–4, pp 319–334 | Cite as

Geographical and experimental assessment of the distribution ofGracilaria species (Rhodophyta: Gigartinales) in relation to temperature

  • J. McLachlan
  • C. J. Bird


Tolerance and growth at temperatures from 0° to 36°C were investigated using 15 species and strains ofGracilaria Grev. isolated from tropical and temperate coasts of the Atlantic and eastern Pacific Oceans. All survived a minimum of 15°C and, with two exceptions, a maximum of 28°C. Only two species tolerated 34°C and none 36°C which was rapidly lethal. Isolates intolerant of temperatures less than 15°C were generally species known only from tropical waters, whereas species isolated from temperate waters tended to be eurythermal, and most seemed not to be restricted to cooler waters. Maximum growth of warm-water isolates tended to occur over a broad range of warmer temperatures, 20°C and higher, and usually extended to the upper limits of thermal tolerance. Isolates from temperate waters showed maximum growth at 20° or 15°C, and there was no appreciable growth of any of the isolates below 10°C. These experimental results are in accord with known distributional patterns ofGracilaria. There is a correlation between temperature and number of species, with most species reported from warm-water areas where the mean water temperature is 25°C or more. Where the 3-month mean minimum temperature is less than 20°C, there is a rapid decline in number of species. In the eastern Atlantic, the relationship is less obvious as few species have been reported from the warm-water region. This is quite likely the result of other environmental factors.


Waste Water Temperate Water Water Pollution Distributional Pattern Pacific Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Abbott, I. A., 1983. Some species ofGracilaria (Rhodophyta) from California. — Taxon32 561–564.Google Scholar
  2. Abbott, I. A. & Hollenberg, G. J., 1976. Marine algae of California. Stanford Univ. Press, Stanford, 827 pp.Google Scholar
  3. Biebl, R., 1962. Seaweeds. In: Physiology and biochemistry of algae. Ed. by R. A. Lewin. Acad. Press, New York, 799–815.Google Scholar
  4. Biebl, R., 1972. Temperature resistance of marine algae. — Proc. int. Seaweed Symp.7 23–28.Google Scholar
  5. Bird, C. J. & McLachlan, J., 1974. Cold-hardiness of zygotes and embryos ofFucus (Phaeophyceae, Fucales). — Phycologia13 215–225.Google Scholar
  6. Bird, C. J., Edelstein, T. & McLachlan, J., 1977. Studies onGracilaria. Experimental observations on growth and reproduction in Pomquet Harbour, Nova Scotia. — Naturaliste can.104 245–255.Google Scholar
  7. Bird, C. J., Meer, J. P. van der & McLachlan, J., 1982. A comment onGracilaria verrucosa (Huds.) Papenf. (Rhodophyta: Gigartinales). — J. mar. biol. Ass. U. K.62 453–459.Google Scholar
  8. Bird, N., McLachlan, J. & Grund, D., 1977. Studies onGracilaria. 5. In vitro life history ofGracilaria sp. from the Maritime Provinces. — Can. J. Bot.55 1282–1290.CrossRefGoogle Scholar
  9. Bolton, J. J. & Lüning, K., 1982. Optimal growth and maximal survival temperatures of AtlanticLaminaria species (Phaeophyta) in culture. — Mar. Biol.66 89–94.CrossRefGoogle Scholar
  10. Dawson, E. Y., 1949. Studies of northeast Pacific Gracilariaceae. — Occ. Pap. Allen Hancock Fdn7 1–105.Google Scholar
  11. Dawson, E. Y., 1961a. Marine red algae of Pacific Mexico. P. 4: Gigartinales. — Pacif. Nat.2 191–343.Google Scholar
  12. Dawson, E. Y., 1961b. Plantas marinas de la zona de las mareas de El Salvador. — Pacif. Nat.2 389–461.Google Scholar
  13. Druehl, L. D., 1981. Geographical distribution. In: The biology of seaweeds. Ed. by C. S. Lobban & M. J. Wynne. Univ. California Press, Berkeley, 306–325.Google Scholar
  14. Earle, S. A., 1969. Phaeophyta of the eastern Gulf of Mexico. — Phycologia7 71–254.Google Scholar
  15. Gaines, S. D. & Lubchenco, J., 1982. A unified approach to marine plant-herbivore interactions. II. Biogeography. — A. Rev. Ecol. Syst.,13 111–138.CrossRefGoogle Scholar
  16. Gorshkov, S. G., 1976. World ocean atlas. 1: Pacific Ocean. Pergamon Press, Oxford, 340 pp. (Russ.: Atlas okeanov).Google Scholar
  17. Gorshkov, S. G., 1979. World ocean atlas. 2: Atlantic and Indian Oceans. Pergamon Press, Oxford, 352 pp. (Russ.: Atlas okeanov).Google Scholar
  18. Hay, M. E. & Norris, J. N., 1984. Seasonal reproduction and abundance of six sympatric species ofGracilaria Grev. (Gracilariaceae; Rhodophyta) on a Caribbean subtidal sand plain. — Proc. int. Seaweed Symp.11 63–72.Google Scholar
  19. Hoek, C. van den, 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. — Biol. J. Linn. Soc.18 81–144.Google Scholar
  20. Kim, D. H., 1970. Economically important seaweeds in Chile-I.Gracilaria. — Botanica mar.13 140–162.CrossRefGoogle Scholar
  21. Lawson, G. W. & John, D. M., 1982. The marine algae and coastal environment of tropical West Africa. — Nova Hedwigia (Beih.)70 1–455.Google Scholar
  22. Makienko, V. F., 1979. Investigation of promising algae [Gracilaria verrucosa (Huds.) Papenf.] for cultivation in the Far East. — Trudy vses. nauchno-issled. Inst. morsk. rybn. Khoz. Okeanogr.138 51–60.Google Scholar
  23. Mayer, A. M. S., 1981. Studies onGracilaria sp. in Bahia Arredondo, Chubut Province, Argentina. — Proc. int. Seaweed Symp.10 705–710.Google Scholar
  24. McLachlan, J. & Edelstein, T., 1977. Life-history and culture ofGracilaria foliifera (Rhodophyta) from south Devon. — J. mar. biol. Ass. U.K.57 577–586.CrossRefGoogle Scholar
  25. Oliveira, E. C. de, 1984. Taxonomic criteria in the genusGracilaria Grev. (Rhodophyta) — an experience with the western Atlantic species. — Proc. int. Seaweed Symp.11 55–58.Google Scholar
  26. Papenfuss, G. F., 1964. Catalogue and bibliography of Antarctic and sub-Antarctic benthic marine algae. — Antarctic Res. Ser.1 1–76.Google Scholar
  27. Pielou, E. C., 1979. Biogeography. Wiley-Interscience, New York, 351 pp.Google Scholar
  28. Renfrew, D. E., 1983. An investigation of the taxonomic relationship betweenGracilaria tikvahiae McLachlan andGracilaria bursapastoris (Gmel.), Silva. M. Sc. Thesis, Acadia Univ., Wolfville, 198 pp.Google Scholar
  29. Rietema, H. & Hoek, C. van den, 1984. Search for latitudinal ecotypes inDumontia contorta (Rhodophyceae). — Helgoländer Meeresunters.38 389–399.Google Scholar
  30. Round, F. E., 1981. The ecology of algae. Cambridge Univ. Press, Cambridge, 653 pp.Google Scholar
  31. Santelices, B. & Fonck, E., 1979. Ecologia y cultivo deGracilaria lemanaeformis. — Act. Symp. Algas mar. Chile.1 165–200.Google Scholar
  32. Saunders, R. G. & Lindsay, J. G., 1979. Growth and enhancement of the agarophyteGracilaria (Florideophyceae). — Proc. int. Seaweed Symp.9 249–255.Google Scholar
  33. Schneider, C. W., 1976. Spatial and temporal distributions of benthic marine algae on the continental shelf of the Carolinas. — Bull. mar. Sci.26 133–151.Google Scholar
  34. Smith, R. L., 1983. Peru coastal currenty during El Niño: 1976 and 1982. — Science, N.Y.221 1397–1399.Google Scholar
  35. Taylor, W. R., 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. Univ. of Michigan Press, Ann Arbor, 870 pp.Google Scholar
  36. Westermeier, R., 1981. The marine seaweed of Chile's tenth region (Valdivia, Osorno, Llanquihue and Chiloé). — Proc. int. Seaweed Symp.10 215–220.Google Scholar
  37. Widdowson, T. B., 1974. The marine algae of British Columbia and northern Washington: revised list and keys. P. 2: Rhodophyceae (red algae). — Syesis7 143–186.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1984

Authors and Affiliations

  • J. McLachlan
    • 1
  • C. J. Bird
    • 1
  1. 1.National Research Council of CanadaHalifaxCanada

Personalised recommendations