Experientia

, Volume 46, Issue 2, pp 161–166

Interaction of mitochondrial porin with cytosolic proteins

  • D. Brdiczka
Multi-author Review

Summary

Intracellular phosphorylation is an important step in active uptake and utilization of carbohydrates. For example glucose and glycerol enter the liver, cell along the extra intracellular gradient by facilitated diffusion through specific carriers and are concentrated inside the cell by phosphorylation via hexokinase or glycerol kinase. Depending on the function of the respective tissue the uptake of carbohydrates serves different metabolic purposes. In brain and kidney medulla cells which depend on carbohydrates, glucose and glycerol are taken up according to the energy demand. However, in tissues such as muscle which synthesize glycogen or like liver which additionally produce fat from glucose, the uptake of carbohydrates has to be regulated according to the availability of glucose and glycerol. How the reversible coupling of the kinases to the outer membrane pore and the mitochondrial ATP serves to fulfil these specific requirements will be explained as well as how this regulates the carbohydrate uptake in brain according to the activity of the oxidative phosphorylation and how this allows glucose uptake in liver, and muscle to persist in the presence of high glucose 6-phosphate without activating the rate of glycolysis.

Key words

Mitochondria outer membrane pore hexokinase glycerol kinase metabolite exchange energy metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams V., Bosch, W., Hämmerle, Th., and Brdiczka, D., Activation of low Km hexokinases in prufied hepatocytes by binding to mitochondria. Biochim. biophys. Acta932 (1988) 195–205.PubMedGoogle Scholar
  2. 2.
    Adams, V., Bosch, W., Schlegel, J., Wallimann, T., and Brdiczka, D., Further characterization of contact sites from mitochondria of different tissues: Topology of peripheral kinases. Biochim. biophys. Acta981 (1989) 213–225.PubMedGoogle Scholar
  3. 3.
    Ballatori, N., and Cohen, J. J., Intracellular distribution of hexokinase in the tissue zones of rat kidney. Biochim. biophys. Acta657 (1981) 448–459.PubMedGoogle Scholar
  4. 4.
    Benz, R., Wojtczak, L., Bosch, W., and Brdiczka, D., Inhibition of adenine nucleotide transport through the mitochondrial porin by a synthetic polyanion. FEBS Lett.210 (1988) 75–80.Google Scholar
  5. 5.
    Bessman, S. P., and Carpenter, C. L., The creatine-phosphate energy shuttle. A. Rev. Biochem.54 (1985) 831–865.Google Scholar
  6. 6.
    Borrebaek, B., Mitochondrial-bound hexokinase of the rat epididymal adipose tissue and its possible relation to the action of insulin. Biochem. Med.3 (1970) 485–497.PubMedGoogle Scholar
  7. 7.
    Brdiczka, D., Knoll, G., Riesinger, I., Weiler, U., Klug, G., Benz, R., and Krause, J., Microcompartmentation at the mitochondrial surface: its function in metabolic regulation. Myocardial and sceletal muscle bioenergetics, pp. 55–69. Ed. N. Brautbar. Plenum, New York 1986.Google Scholar
  8. 8.
    Brdiczka, D., Adams, V., Kottke, M., and Benz, R., Topology of peripheral kinases: its importance in transmission of mitochondrial energy, in: Anion carriers of mitochondrial membranes, pp. 361–372. Eds A. Azzi, K. A. Nateçz, M. J. Nateçz and L. Wojtczak. Springer, Heidelberg 1989.Google Scholar
  9. 9.
    Colombini, M., A candidate for the permeability pathway of the outer mitochondrial membrane. Nature279 (1979) 643–645.PubMedGoogle Scholar
  10. 10.
    Denis-Pouxviel, C., Riesinger, I., Bühler, C., Brdiczka, D., and Murat, J.-C., Regulation of mitochondrial hexokinase in cultured HT 29 human cancer cells. Biochim. biophys. Acta902 (1987) 335–348.PubMedGoogle Scholar
  11. 11.
    Felgner, P. I., Messer, J. L., and Wilson, J. E., Purification of a hexokinase binding protein from the outer mitochondrial membrane. J. biol. Chem.254 (1979) 4946–4949.PubMedGoogle Scholar
  12. 12.
    Felgner, P. I., and Wilson, J. E., Effect of neutral salts on the interaction of rat brain hexokinase with the outer mitochondrial membrane. Archs Biochem. Biophys.182 (1977) 282–294.Google Scholar
  13. 13.
    Feo, F., Canuto, R. A., Garcea, R., and Gabriel, L., Effect of cholesterol content of some physical and functional properties of mitochondria isolated from adult rat liver, fetal liver, cholesterol-enriched liver and hepatoma AH-130, 3924A and 5123. Biochim. biophys. Acta413 (1975) 116–134.PubMedGoogle Scholar
  14. 14.
    Fiek, Ch., Benz, R., Roos, N., and Brdiczka, D., Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. Biochim. biophys. Acta688 (1982) 429–440.PubMedGoogle Scholar
  15. 15.
    Gots, R. E., and Bessman, S. P., The functional compartmentation of mitochondrial hexokinase. Archs Biochem. Biophys.163 (1974) 7–14.Google Scholar
  16. 16.
    Gouchun, X., and Wilson, J. E., Rat brain hexokinase: the hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer. Archs Biochem. Biophys.267 (1974) 803–810.Google Scholar
  17. 17.
    Hackenbrock, C. R., Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc. natl Acad. Sci. USA61 (1968) 589–605.Google Scholar
  18. 18.
    Hebisch, S., Sies, H., and Soboll, S., Function dependent changes in the subcellular distribution of high energy phosphates in fast and slow rat skeletal muscles. Pflügers Arch.406 (1986) 20–24.Google Scholar
  19. 19.
    Jacobus, W. E., Respiratory control and the integration of heart highenergy phosphate metabolism by mitochondrial creatine kinase. A. Rev. Physiol.47 (1985) 707–725.Google Scholar
  20. 20.
    Janski, A. M., and Cornell, N. M., Association of ATP citrate lyase with mitochondria. Biochem. biophys. Res Commun.92 (1980) 305–312.PubMedGoogle Scholar
  21. 21.
    Kaneko, M., Kruokawa, M., and Ishibashi, S., Binding and function of mitochondrial glycerol kinase in comparison with those of mitochondrial hexokinase. Archs Biochem. Biophys.237 (1985) 135–141.Google Scholar
  22. 22.
    Klingenberg, M., and Held, H. W., The ADP/ATP translocation in mitochondria and its role in intracellular compartmentation in: Metabolic Compartmentation, pp. 101–122.24. Ed. H. Sies. Academic Press, New York 1982.Google Scholar
  23. 23.
    Klug, G., Krause, J., Östlund, A. K., Knoll, G., and Brdiczka, D., Alteration in liver mitochondrial function as a result of fasting and exhaustive exercise. Biochim. biophys. Acta764 (1984) 272–282.PubMedGoogle Scholar
  24. 24.
    Knoll, G., and Brdiczka, D., Changes in freeze-fracture mitochondrial membranes correlated to their energetic state. Biochim. biophys. Acta733 (1983) 102–110.PubMedGoogle Scholar
  25. 25.
    Kottke, M., Adams, V., Riesinger, I., Bremm, G., Bosch, W., Brdiczka, D., Sandri, G., and Panfili, E., Mitochondrial boundary membrane contact sites in brain: Points of hexokinase and creatine kinase location and of control of Ca2+ transport. Biochim. biophys. Acta395 (1988) 807–832.Google Scholar
  26. 26.
    Krause, J., Hay, R., Kowollik, C., and Brdiczka, D., Cross-linking analysis of yeast mitochondrial outer membrane. Biochim. biophys. Acta860 (1986) 690–698.PubMedGoogle Scholar
  27. 27.
    Krishan, K. A., and Pedersen, P. L., Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J. biol. Chem.263 (1988) 17422–17428.PubMedGoogle Scholar
  28. 28.
    Kurokawa, M., Tokuoka, S., Oda, S., Tsubotani, E., and Ishibashi, S., Difference in efficiency of function between mitochondria-bound hexokinase and non-bound one. Biochem. Int.2 (1981) 645–650.Google Scholar
  29. 29.
    Lindén, M., Gellerfors, P., and Nelson, B. D., Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical. FEBS Lett.141 (1982) 189–192.PubMedGoogle Scholar
  30. 30.
    Ludwig, O., De Pinto, V., Palmieri, F., and Benz, R., Pore formation by the mitochondrial porin of rat brain in lipid bilayer membranes. Biochim. biophys. Acta860 (1986) 268–276.PubMedGoogle Scholar
  31. 31.
    McCabe, E. R. B., Human glycerol kinase deficiency: an inborn error of compartmental metabolism Biochem. Med.30 (1983) 215–230.PubMedGoogle Scholar
  32. 32.
    McCabe, E. R. B., Disorders of glycerol metabolism, in: Metabolic Basis of Inherited Disease, chap. 36. Eds C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle. McGraw-Hill Book Co, New York 1988.Google Scholar
  33. 33.
    McCabe, E. R. B., and Seltzer, W. K., Glycerol kinase deficiency: Compartmental considerations regarding pathogenesis and clinical heterogeneity. Myocardial and sceletal muscle bioenergetics, pp. 481–493. Ed. N. Brautbar. Plenum, New York 1986.Google Scholar
  34. 34.
    Nakashima, R. A., Mangan, P. S., Colombini, M., and Pedersen, P. L., Hexokinase receptor complex in hepatoma mitochondria: Evidence from N,N′-Dicyclohexylcarbodiimide-labelling studies for the involvement of the pore-forming protein VDAC. Biochemistry25 (1986) 1005–1012.Google Scholar
  35. 35.
    Nelson, B. D., and Kabir, F., Adenylate kinase as a source of ATP for tumor mitochondrial hexokinase. Biochim. biophys. Acta841 (1985) 195–200.PubMedGoogle Scholar
  36. 1.
    Allured, V. A., Collier, R. J., Carroll, S. F., and McKay, D. B., Structure of exotoxin A ofPseudomonas aeruginosa at 3Å resolution. Proc. natl Acad. Sci. USA83 (1986) 1320–1324.PubMedGoogle Scholar
  37. 2.
    Baty, D., Knibiehler, M., Verheij, H., Pattus, F., Shire, D., Bernadac, A., and Lazdunski, C., Site-directed mutagenesis of the cooh-terminal region of colicin A: effect on secretion and voltage-dependent channel activity. Proc. natl Acad. USA84 (1987) 1152–1156.Google Scholar
  38. 3.
    Baty, D., Frenette, M., Lloubes, R., Geli, V., Howard, S. P., Pattus, F., and Lazdunski, C., Functional domains of colicin A. Molec. Microb.2 (1988) 807–811.Google Scholar
  39. 4.
    Boheim, G., and Kolb, H. A., Analysis of the multi-pore system of alamethicin in a lipid membrane. J. Membr. Biol.38 (1978) 99–150.Google Scholar
  40. 5.
    Boulanger, P., and Letellier, L., Characterisation of ion channels involved in the penetration of phage T4 DNA intoEscherichia coli cells. J. biol. Chem.263 (1988) 9767–9775.PubMedGoogle Scholar
  41. 6.
    Bourdineaud, J.-P., Boulanger, P., Lazdunski, C., and Letellier, L., In vivo colicin A properties: channel activity is voltage dependent but translocation is voltage independent. J. biol. Chem. (1989) in press.Google Scholar
  42. 7a.
    Braun, V., The iron-transport systems ofEscherichia coli, in: The Enzymes of Biological Membranes, vol. 3, Membrane Transport, pp. 617–652. Ed. A. N. Martinosi. Plenum Publ., New York 1985.Google Scholar
  43. 8.
    Brunden, K. R., Cramer, W. A., and Cohen, F. S., Purification of a small receptor-binding peptide from the central region of colicin E1 molecule. J. biol. Chem.259 (1984) 190–196.PubMedGoogle Scholar
  44. 9.
    Brunden, K. R., Uratani, Y., and Cramer, W. A., Dependence of the conformation of a colicin E1 channel-forming peptide on acidic pH and solvent polarity. J. biol. Chem.259 (1984) 7682–7687.PubMedGoogle Scholar
  45. 10.
    Bruggeman, E. P., and Kayalar, C., Determination of the molecularity of the colicin E1 channel by stopped-flow ion flux kinetics. Proc. natl Acad. Sci. USA83 (1986) 4273–4276.PubMedGoogle Scholar
  46. 11.
    Bullock, J. O., Cohen, F. S., Dankert, J. R., and Cramer, W. A., Comparison of the macroscopic and single channel conductance properties of colicin E1 and its cooh-terminal tryptic peptide. J. biol. Chem.258 (1983) 9908–9912.PubMedGoogle Scholar
  47. 12.
    Bullock, J. O., and Cohen, F. S., Octyl glucoside promotes incorporation of channels into neutral planar phospholipid bilayers. Studies with colicin Ia. Biochim. biophys. Acta856 (1986) 101–108.PubMedGoogle Scholar
  48. 13.
    Caesarini, G., and Banner, D. W., Regulation of plasmid copy number by complementary RNAs. Trends Biochem. Sci.10 (1985) 303–306.Google Scholar
  49. 14.
    Cavard, D., Crozel, V., Gorvel, J.-P., Pattus, F., Baty, D., and Lazdunski, C., A molecular and immunological approach of colicin A, a pore-forming protein. J. molec. Biol.187 (1986) 449–459.PubMedGoogle Scholar
  50. 15.
    Cavard, D., Sauve, P., Heitz, F., Pattus, C., Martinez, C., Dijkman, R., and Lazdunski, C., Hydrodynamic properties of colicin A. Existence of a high affinity lipid-binding site and oligomerization at acid pH. Eur. J. Biochem.172 (1988) 507–512.PubMedGoogle Scholar
  51. 16.
    Chan, P. T., Ohmori, H., Tomizawa, J., and Leibovitz, J., Nucleotide sequence and gene organization of ColE1 DNA. J. biol. Chem.260 (1985) 8925–8935.PubMedGoogle Scholar
  52. 17.
    Choe, S., Konisky, J., and Stroud, R., Structure of a channel-forming colicin Ia. Biophys. J.51 (1987) 249a.Google Scholar
  53. 18.
    Collarini, M., Amblard, G., Lazdunski, C., and Pattus, F., Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers. Eur. Biophys. J.14 (1987) 147–153.PubMedGoogle Scholar
  54. 19.
    Cramer, W. A., Dankert, J. R., and Uratani, Y., The membrane channel-forming bacteriocidal protein, colicin E1. Biochim. biophys. Acta737 (1983) 173–193.PubMedGoogle Scholar
  55. 20.
    Cramer, W. A., Cohen, F. S., Merill, A. R., Nakazawa, A., Shirabe, K., Shiver, J. W., and Xu, S., Mutagenesis of the cooh-terminal channel domain of colicin E1 affecting the ion selectivity of the channel, in: Transport Through Membranes: Carriers, Channels and Pumps. pp. 77–89. Eds. A. Pullman et al. Kluwer Acad. Publ., Dordrecht, the Netherlands, 1988.Google Scholar
  56. 21.
    Dankert, J. R., Uratani, Y., Grabau, C., Cramer, W. A., and Hermodson, M., On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization. J. biol. Chem.257 (1982) 3857–3863.PubMedGoogle Scholar
  57. 22.
    Davidson, V. L., Brunden, K. R., Cramer, W. A., and Cohen, F. S., Studies on the mechanism of action of channel-forming colicins using artificial membranes. J. Membr. Biol.79 (1984) 105–118.PubMedGoogle Scholar
  58. 23.
    Davidson, V. L., Brunden, K. R., and Cramer, W. A., Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size. J. biol. Chem.259 (1984) 594–600.PubMedGoogle Scholar
  59. 24.
    Davidson, V. L., Brunden, K. R., and Cramer, W. A., Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: Relevance to the mechanism of colicins and certain toxins. Proc. natl Acad. Sci. USA82 (1985) 1386–1390.PubMedGoogle Scholar
  60. 25.
    Davison, J., Mechanism of control of DNA replication and incompatibility in colE1-type plasmids: A review. Gene28 (1984) 1–15.PubMedGoogle Scholar
  61. 26.
    De Graaf, F. K., Stukart, M. J., Boogert, F. C., and Metselaar, K., Limited proteolysis of cloacin DF13 and characterization of the cleavage products. Biochemistry17 (1978) 1137–1142.PubMedGoogle Scholar
  62. 27.
    Eisenberg, D., Three-dimensional structure of membrane and surface proteins. A. Rev. Biochem.53 (1984) 595–623.Google Scholar
  63. 28.
    Engelman, D. M., and Steitz, T. A., The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell23 (1981) 411–422.PubMedGoogle Scholar
  64. 29.
    Escuyer, V., Boquet, P., Perrin, D., Montecucco, C., and Mock, M., A pH-induced increase in hydrophobicity as a possible step in the penetration of colicin E3 through bacterial membranes. J. biol. Chem.261 (1986) 10891–10898.PubMedGoogle Scholar
  65. 30.
    Fields, K. L., and Luria, S. E., Effects of colicins E1 and K on cellular metabolism. J. Bact.97 (1969) 64–77.PubMedGoogle Scholar
  66. 31.
    Frenette, M., Knibiehler, M., Baty, D., Geli, V., Pattus, F., Verger, R., and Lazdunski, C., Interactions of colicin A domains with phospholipid monolayers and liposomes: relevance to the mechanism of action. Biochemistry28 (1989) 2509–2514.PubMedGoogle Scholar
  67. 32.
    Gaastra, W., Oudega, G., and De Graaf, F. K., The use of mutants in the study of the structure-function relationships in colacin DF13. Biochim. biophys. Acta540 (1980) 301–312.Google Scholar
  68. 33.
    Gould, J. M., and Cramer, W. A., Studies on the depolarization of theEscherichia coli cell membrane by colicin E1. J. biol. Chem.252 (1977) 5491–5497.PubMedGoogle Scholar
  69. 34.
    Graaf, F. K., and Oudega, B., Production and release of Cloacin DF13 and related colicins. Curr. Top. Microb. Immun.125 (1986) 183–205.Google Scholar
  70. 35.
    Gratia, A., and Fredericq, C. R., Soc. Biol.140 (1946) 1032.Google Scholar
  71. 36.
    Guy, R. H., A model of colicin E1 membrane channel structure. Biophys. J.41 (1983) 363a.Google Scholar
  72. 37.
    Hedges, A. J., An examination of single-hit and multi-hit hypotheses in relation to the possible kinetics of colicin adsorbtion. J. theor. Biol.11 (1966) 383–410.PubMedGoogle Scholar
  73. 38.
    Heller, K., Kadner, R., and Gunther, K., Suppression of the btuB451 mutation by mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane ofEscherichia coli. Gene64 (1988) 147–153.PubMedGoogle Scholar
  74. 39.
    Hodgkin, A. L., and Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond.117 (1952) 500–544.PubMedGoogle Scholar
  75. 40.
    Jacob, F., Siminovitch, L., and Wollman, L., Sur la biosynthèse d'une colicine et sur son mode d'action. Ann. Inst. Pasteur83 (1952) 295–315.Google Scholar
  76. 41.
    Jakes, K. S., Davis, N. G., and Zinder, N. D., A hybrid toxin from bacteriophage f1 attachment protein and colicin E3 has altered cell receptor specificity. J. Bact.170 (1988) 4231–4238.PubMedGoogle Scholar
  77. 42.
    Kayalar, C., and Duzgunes, N., Membrane action of colicin E1: detection by release of carboxyfluoresceine and calceine liposomes. Biochim. biophys. Acta860 (1986) 51–56.PubMedGoogle Scholar
  78. 43.
    Konisky, J., and Richards, F., Characterization of colicin Ia and colicin Ib. Purification and some physical properties. J. biol. Chem.245 (1970) 2972–2978.PubMedGoogle Scholar
  79. 44.
    Konisky, J., Colicins and other bacteriocins with established modes of action. A. Rev. Microbiol.36 (1982) 125–144.Google Scholar
  80. 45.
    Lazdunski, C., Baty, D., Geli, V., Cavard, D., Morlon, J., Lloubles, R., Howard, P., Knibiehler, M., Chartier, M., Varenne, S., Frenette, M., Dasseux, J.-L., and Pattus, F., The membrane channel-forming colicin A: synthesis, secretion, structure, action and immunity. Biochim. biophys. Acta947 (1988) 445–464.PubMedGoogle Scholar
  81. 46.
    Letellier, L., and Boulanger, P., Involvment of ion channels in the transport of phage DNA through the cytoplasmic membrane ofE. coli. Biochimie71 (1989) 167–174.PubMedGoogle Scholar
  82. 47.
    Liu, Q. R., Crozel, V., Levinthal, F., Slatin, S., Finkelstein, A., and Levinthal, C., A very short peptide makes a voltage-dependent ion channel: The critical length of the channel domain of colicin E1. Proteins1 (1986) 218–219.PubMedGoogle Scholar
  83. 48.
    Li-Xin, Z., Jordi, W., and De Kruiff, B., Influence of heme and importance of the N-terminal part of the protein and the physical state of model membranes for the apocytochrome c-lipid interaction. Biochim. biophys. Acta942 (1988) 115–124.PubMedGoogle Scholar
  84. 49.
    Lodish, H. F., Multi-spanning membrane proteins: How accurate are the models? Trends Biochem. Sci.13 (1988) 332–334.PubMedGoogle Scholar
  85. 50.
    Mankovich, J. A., Hsu, C., and Konisky, J., DNA and amino acid sequence analysis of structural and immunity genes of colicins Ia and Ib. J. Bact.168 (1986) 228–236.PubMedGoogle Scholar
  86. 51.
    Martinez, M. C., Lazdunski, C., and Pattus, F., Isolation, molecular and functional properties of the C-terminal domain of colicin A. EMBO J.2 (1983) 1501–1507.PubMedGoogle Scholar
  87. 52.
    Massotte, D., Dasseux, J.-L., Sauve, P., Cyrklaff, M., Leonard, K., and Pattus, F., Interaction of the pore-forming domain of colicin A with phospholipid vesicles. Biochemistry28 (1989) 7713–7719.PubMedGoogle Scholar
  88. 53.
    McCrea, P. D., Engelman, D. M. and Popot, J.-L., Topography of integral membrane proteins: hydrophobicity analysis vs. immunolocalisation. Trends Biochem. Sci.13 (1988) 289–290.Google Scholar
  89. 54.
    Merrill, A. R., and Cramer, W. A., The mechanism of colicin E1 channel formation: pH-dependent unfolding and membrane potential-dependent insertion in lipid bilayers. Biophys. J.55 (1989) 247a.Google Scholar
  90. 55.
    Mock, M., and Pugsley, A. P., The BtuB group Col plasmids and homology between the colicins they encode. J. Bact.150 (1982) 1069–1076.PubMedGoogle Scholar
  91. 56.
    Morlon, J., Chartier, M., Bidaut, M., and Lazdunski, C., The complete nucleotide sequence of the colicinogenic plasmid ColA. Molec. gen. Genet.211 (1988) 232–243.Google Scholar
  92. 57.
    Nau, C. D., and Konisky, J., Evolutionary relationship between the TonB-dependent outer membrane transport proteins: Nucleotide and amino acid sequences of theEscherichia coli colicin I receptor-gene. J. Bact.171 (1989) 1041–1047.PubMedGoogle Scholar
  93. 58.
    Neville, D. M., and Hudson, T. H., Transmembrane transport of diphtheria toxin, related toxins and colicins. A. Rev. Biochem.55 (1986) 195–224.Google Scholar
  94. 59.
    Nijkamp, H. J. J., De Lang, R., Stuije, A., van dem Elzen, P. J. M., Veltkamp, E., and van Putten, A. J., The complete nucleotide sequence of the bacteriocinogenic plasmid CloDF13. Plasmid16 (1986) 135–160.PubMedGoogle Scholar
  95. 60.
    Nogueira, R. A., and Varanda, W. A., Gating properties of channels formed by colicin Ia in planar lipid bilayer membranes. J. Membr. Biol.105 (1988) 143–153.PubMedGoogle Scholar
  96. 61.
    Novick, R. P., Plasmid incompatibility. Microbiol. Rev.51 (1987) 381–395.PubMedGoogle Scholar
  97. 62.
    Ohno-Iwashita, Y., and Imahori, K., Assignment of the functional loci of colicin E2 and colicin E3 by the characterization of proteolytic fragments. Biochemistry19 (1980) 652–659.PubMedGoogle Scholar
  98. 63.
    Ohno-Iwashita, Y., and Imahori, K., Assignment of the functional loci in the colicin E1 molecule by characterization of its proteolytic fragments. J. biol. Chem.257 (1982) 6446–6451.PubMedGoogle Scholar
  99. 64.
    Parker, M. W., Pattus, F., Tucker, A. D., and Tsernoglou, D., Structure of the membrane pore-forming fragment of colicin A. Nature337 (1989) 93–96.PubMedGoogle Scholar
  100. 65.
    Parker, M. W., Tucker, A. D., Pattus, F., and Tsernoglou, D., A model for ion channel formation based on structural analysis of the poreforming domain of colicin A. submitted.Google Scholar
  101. 66.
    Pattus, F., Martinez, M. C., Dargent, B., Cavard, D., Verger, R., and Lazdunski, C., Interaction of colicin A with phospholipid monolayers and liposomes. Biochemistry22 (1983) 5698–5707.Google Scholar
  102. 67.
    Pattus, F., Heitz, F., Martinez, C., Provencher, S. W., and Lazdunski, C., Secondary structure of the pore-forming colicin A and its C-terminal fragment. Experimental fact and structure prediction. Eur. J. Biochem.152 (1985) 681–689.PubMedGoogle Scholar
  103. 68.
    Pattus, F., Cavard, D., Crozel, V., Baty, D., Adrian, M., and Lazdunski, C., pH-dependent membrane fusion is promoted by various colicins. EMBO J.4 (1985) 2469–2474.PubMedGoogle Scholar
  104. 69.
    Petersen, A., and Cramer, W. A., Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles. J. Membr. Biol.99 (1987) 197–204.PubMedGoogle Scholar
  105. 70.
    Postle, K., and Skare, J. T.,Escherichia coli tonB protein is exported from the cytoplasm without proteolytic cleavage of its amino terminus. J. biol. Chem.263 (1988) 11000–11007.PubMedGoogle Scholar
  106. 71.
    Pressler, U., Braun, V., Wittmann-Liebold, B., and Benz, R., Structural and functional properties of colicin B. J. biol. Chem.261 (1986) 2654–2659.PubMedGoogle Scholar
  107. 72.
    Pugsley, A. P., The ins and outs of colicins. Part 1: production and translocation across membranes. Microbiol. Sci.1 (1984) 168–175.PubMedGoogle Scholar
  108. 73.
    Pugsley, A. P., The ins and outs of colicins. Part 2: Lethal action, immunity and ecological implications. Microbiol. Sci.1 (1984) 203–205.PubMedGoogle Scholar
  109. 74.
    Pugsley, A. P., Nucleotide sequencing of the structural gene for colicin N reveals homology between the catalytic, C-terminal domains of colicins A and N. Molec. Microbiol.1 (1987) 317–325.Google Scholar
  110. 75.
    Raymond, L., Slatin, S. L., and Finkelstein, A., Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. J. Membr. Biol.84 (1985) 173–181.PubMedGoogle Scholar
  111. 76.
    Raymond, L., Slatin, S. L., and Finkelstein, A., Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of regions outside the channel-forming domain. J. Membr. Biol.92 (1986) 255–268.PubMedGoogle Scholar
  112. 77.
    Reeves, P., The bacteriocins. Bacteriol. Rev.29 (1965) 24–45.Google Scholar
  113. 78.
    Schramm, E., Mende, J., Braun, V., and Kamp, R. M., Nucleotide sequence of the colicin B activity gene cba: Consensus pentapeptide among TonB-dependent colicins and receptors. J. Bact.169 (1987) 3350–3357.PubMedGoogle Scholar
  114. 79.
    Schein, S. J., Kagan, B., and Finkelstein, A., Colicin K acts by forming voltage-dependent channels in phospholipid planar bilayer membranes. Nature276 (1978) 159–163.PubMedGoogle Scholar
  115. 80.
    Schwartz, S., and Helinski, D. R., Purification and characterization of colicin E1. J. biol. Chem.246 (1971) 6318–6327.PubMedGoogle Scholar
  116. 81.
    Shirabe, K., Cohen, F. S., Xu, S., Peterson, A. A., Shiver, J. W., Nikazawa, A., and Cramer, W. A., Decrease of anion selectivity caused by mutation of Thr501 and Gly502 to Glu in the hydrophobic domain of the colicin E1 channel. J. biol. Chem.264 (1989) 1951–1957.PubMedGoogle Scholar
  117. 82.
    Shiver, J. W., Cramer, W. A., Cohen, F. S., Bishop, L. J., and de Jong, P. J., On the explanation of the acidic pH requirement for in vitro activity of colicin E1. J. biol. Chem.262 (1987) 14273–14281.PubMedGoogle Scholar
  118. 83.
    Shiver, J. W., Cohen, F. S., Merill, A. R., and Cramer, W. A., Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel. Biochemistry27 (1988) 8421–8428.PubMedGoogle Scholar
  119. 84.
    Slatin, S., Channels formed by colicin E1 in planar lipid bilayers are monomers. Biophys. J.53 (1988) 155a.Google Scholar
  120. 85.
    Slatin, S. L., Colicin E1 in planar lipid bilayers. Int. J. Biochem.20 (1988) 737–744.PubMedGoogle Scholar
  121. 86.
    Stirling, C. J., Colloms, S. D., Collins, J. F., Szatmari, G., and Sherrat, D. J., xerB, anEscherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens aminopeptidase. EMBO J.8 (1989) 1623–1627.PubMedGoogle Scholar
  122. 87.
    Summers, D. K., and Sherrat, D., Bacterial plasmid stability. Bio Essays2 (1986) 209–211.Google Scholar
  123. 88.
    Suit, J. L., Fan, M. L.-J., Kayalar, C., and Luria, C. E., Genetic study of the functional organization of the colicin E1 molecule. J. Bact.161 (1985) 944–948.PubMedGoogle Scholar
  124. 89.
    Sun, T., and Webster, R. E., Nucleotide sequence of a gene cluster involved in entry of E colicins and single stranded DNA of infecting filamentous bacteriophages intoEscherichia coli. J. Bact.169 (1987) 2667–2674.PubMedGoogle Scholar
  125. 90.
    Sun, T., and Webster, R. E., fii, a bacterial locus required for filamentous phage infection and its relation to colicin-toleranttol A andtol B. J. Bact.165 (1986) 107–115.PubMedGoogle Scholar
  126. 91.
    Tucker, A. D., Pattus, F., and Tsernoglou, D., Crystallization of the C-terminal domain of colicin A carrying the voltage-dependent pore activity of the protein. J. molec. Biol.190 (1986) 133–134.PubMedGoogle Scholar
  127. 92.
    Tucker, A. D., Baty, D., Parker, M. W., Pattus, F., Lazdunski, C., and Tsernoglou, D., Crystallographic phases through genetic engineering: experiences with colicin A. Protein Eng.2 (1989) 399–405.PubMedGoogle Scholar
  128. 93.
    Uratani, Y., and Cramer, W. A., Reconstitution of colicin E1 into dimyristoyl-phosphatidylcholine vesicles. J. biol. Chem.256 (1981) 4017–4023.PubMedGoogle Scholar
  129. 94.
    Varley, J. M., and Boulnois, G. J., Analysis of a cloned colicin Ib gene: complete nucleotide sequence and implications for regulation of expression. Nucl. Acid Res.12 (1984) 6727–6739.Google Scholar
  130. 95.
    Williams, R. J. P., Wormald, M. R., and Cramer, W. A., NMR studies of a channel-forming COOH-terminal peptide of colicin E1. Biophys. J.55 (1989) 495a.Google Scholar
  131. 96.
    Wendt, L., Mechanism of colicin action: Early events. J. Bact.104 (1970) 1236–1241.Google Scholar
  132. 97.
    Xu, S., Cramer, W. A., Peterson, A. A., Hermodson, M., and Montecucco, G., Dynamic properties of membrane proteins: Reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide. Proc. natl Acad. Sci. USA85 (1988) 7531–7535.PubMedGoogle Scholar
  133. 98.
    Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T., and Nakazawa, A., Nucleotide sequence of the structural gene for colicin E1 and predicted structure of the protein. Proc. natl Acad. Sci. USA79 (1982) 2827–2831.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • D. Brdiczka
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanz(Federal Republic of Germany)

Personalised recommendations