Agents and Actions

, Volume 38, Supplement 1, pp 60–65 | Cite as

Dihydrolipoic acid protects pancreatic islet cells from inflammatory attack

  • V. Burkart
  • T. Koike
  • H. -H. Brenner
  • Y. Imai
  • H. Kolb


In vitro models of pancreatic islet cell inflammation are the lysis of isolated islet cells by activated macrophages or by oxygen radicals released by the endothelial enzyme xanthine oxidase. Dihydrolipoic acid protected islet cells in both systems by different modes of action. Macrophage cytotoxicity towards islet cells, which is nitric-oxide-mediated, was suppressed by 2 h of preincubation of macrophages with lipoic acid. Similarly, 2 h of preincubation sufficed to protect islet cells against enzymatically produced oxygen radicals. Dihydrolipoic acid was found by chemiluminescence assay to scavenge directly such radicals. In macrophages dihydrolipoic acid suppressed the production of nitrite as a measure of nitric oxide release. These results suggest that dihydrolipoic acid is an anti-inflammatory agent which at the same time interferes with nitric oxide release from inflammatory macrophages and protects target cells from oxygen radical attack.


Nitric Oxide Nitrite Xanthine Islet Cell Oxygen Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. J. Malaisse, F. Malaisse-Lagae, A. Sener and D. G. Pipeleers,Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proc. Natl. Acad. Sci. USA79, 927–930 (1982).PubMedGoogle Scholar
  2. [2]
    B. Appels, V. Burkart, G. Kantwerk-Funke, J. Funda, V. Kolb-Bachofen and H. Kolb,Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J. Immunol.142, 3803–3808 (1989).PubMedGoogle Scholar
  3. [3]
    K. D. Kröncke, V. Kolb-Bachofen, B. Berschick, V. Burkart and H. Kolb,Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem. Biophys. Res. Commun.175, 752–758 (1991).PubMedGoogle Scholar
  4. [4]
    V. Burkart, T. Koike, H.-H. Brenner and H. Kolb,Oxygen radicals generated by the enzyme xanthine oxidase lyse rat pancreatic islet cells in vitro. Diabetologia35, 1028–1034 (1992).PubMedGoogle Scholar
  5. [5]
    J. M. McCord,Oxygen-derived free radicals in postischemic tissue damage. New Engl. J. Med.312, 159–163 (1985).PubMedGoogle Scholar
  6. [6]
    D. N. Granger, M. E. Höllwarth and D. A. Parks,Ischemia reperfusion injury: Role of oxygen-derived free radicals. Acta Phys. Scand.548 (Suppl.), 47–63 (1986).Google Scholar
  7. [7]
    Y. J. Suzuki, M. Tsuchiya and L. Packer,Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Rad. Res. Commun.15, 255–263 (1991).Google Scholar
  8. [8]
    A. Bast and G. R. Haenen,Interplay between lipoic acid and glutathione in the protection against liposomal lipid peroxidation. Biochim. Biophys. Acta963, 558–561 (1988).PubMedGoogle Scholar
  9. [9]
    V. Kagan, S. Khan, C. Swanson, A. Shvedova, E. Serbinova and L. Packer,Antioxidant action of thioctic and dihydrolipoic acid. Free Rad. Biol. Med.9 (Suppl.) 15, (1990).Google Scholar
  10. [10]
    K. S. Wood, G. M. Buga, R. E. Byrns and L. J. Ignarro,Vascular smooth muscle-derived relaxing factor (MDRF) and its close similarity to nitric oxide. Biochem. Biophys. Res. Commun.170, 80–88 (1990).PubMedGoogle Scholar
  11. [11]
    T. Mosman,Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxic assays. J. Immunol. Meth.65, 55–63 (1983).Google Scholar
  12. [12]
    F. Denizot and R. Lang,Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth.89, 271–277 (1986).Google Scholar
  13. [13]
    D. Jancjic and C. B. Wollheim,Islet cell metabolism is reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia35, 482–485 (1992).PubMedGoogle Scholar
  14. [14]
    H. Scholich, M. E. Murphy and H. Sies,Antioxidanswirkung von Dihydrolipoat bei der mikrosomalen Lipidperoxidation und ihre Abhängigkeit von α-Tocopherol, in:Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure (Eds. H. O. Borbe and H. Ulrich) pp. 124–136, pmi Verlag, Frankfurt 1989.Google Scholar
  15. [15]
    J. Barth and H. Scholich,Der Einfluß von DL-α-Liponsäure auf die Chemilumineszenz von Granulozyten und Monozyten in vitro, in:Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure (Eds. H. O. Borbe and H. Ulrich) pp. 154–162, pmi Verlag, Frankfurt 1989.Google Scholar
  16. [16]
    B. Kallmann, V. Burkart, K. D. Kröncke, V. Kolb-Bachofen and H. Kolb,Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. Life Sci.51, 671–678 (1992).PubMedGoogle Scholar
  17. [17]
    K. Sakurai and T. Ogiso,Studies on the biological damage by active oxygen. III. Generation of hydroxyl radical and inhibition of insulin release in hypoxanthine-xanthine oxidase system in the presence of pancreatic islet cells. Yakugaku Zasshi109, 102–106 (1989).PubMedGoogle Scholar
  18. [18]
    J. S. Beckmann, T. W. Beckmann, J. Chen, P. A. Marshall and B. A. Freeman,Apparent hydroxyl radical production by peroxinitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA87, 1620–1624 (1990).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • V. Burkart
    • 1
  • T. Koike
    • 1
  • H. -H. Brenner
    • 1
  • Y. Imai
    • 1
  • H. Kolb
    • 1
  1. 1.Diabetes Research Institute at the University of DüsseldorfDüsseldorfGermany

Personalised recommendations