Advertisement

Agents and Actions

, Volume 38, Supplement 1, pp 19–26 | Cite as

Airway inflammation induced by xanthine/xanthine oxidase in guinea pigs

  • M. Misawa
  • H. Arai
Allergy and Histamine

Abstract

Airway inflammation is suggested to play an important role in bronchial asthma. However, there is poor documentation about the effects of reactive oxygens on airway tissues in aspect of airway inflammation. Presently, we investigated whether aerosolized xanthine (X)/xanthine oxidase (XOD) induces airway inflammation in anesthetized guinea pigs.

Inhalation of X for 5 min followed by inhalation of XOD for 5 min was performed with an ultrasonic nebulizer in anesthetized animals. Airway inflammation was assessed by airway vascular permeability using Pontamine sky blue.

Inhalation of X/XOD produced a marked Pontamine sky blue exudation in the trachea, main bronchus and lungs. The X/XOD-induced increase in Pontamine sky-blue exudation was attenuated by pretreatment with inhaled catalase, but not by superoxide dismutase. Additionally, in the bronchus and lungs, the increase in Pontamine sky-blue exudation was significantly suppressed by deferoxamine.

The above results indicate that hydrogen peroxide and hydroxyl radical converted from superoxide anion cause an intense airway inflammation.

Keywords

Asthma Superoxide Catalase Superoxide Dismutase Xanthine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. A. Laitinen, M. Heino, A. Laitinen, T. Kava and T. Haahtela,Damage of airway epithelium and bronchial reactivity in patients with asthma. Am. Rev. Respir. Dis.131, 599–606 (1985).PubMedGoogle Scholar
  2. [2]
    J. G. Kirby, F. E. Hargreave, G. J. Gleich and P. M. O'Byrne,Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects. Am. Rev. Respir. Dis.136, 379–383 (1987).PubMedGoogle Scholar
  3. [3]
    M. J. Holtzman, L. M. Fabbri and P. M. O'Byrne,Importance of airway inflammation for hyperresponsiveness induced by ozone. Am. Rev. Respir. Dis.127, 686–690 (1983).PubMedGoogle Scholar
  4. [4]
    C. G. Murlas and J. H. Roum,Sequence of pathologic changes in the airway mucosa of guinea pigs during ozone-induced bronchial hyperreactivity. Am. Rev. Respir. Dis.131, 314–320 (1985).PubMedGoogle Scholar
  5. [5]
    K. F. Chung, A. B. Becker, S. C. Lazarus, O. L. Frick, J. A. Nadel and W. M. Gold,Antigen-induced airway hyperresponsiveness and pulmonary inflammation in allergic dogs. J. Appl. Physiol.58, 1347–1353 (1985).PubMedGoogle Scholar
  6. [6]
    D. W. Empey, L. A. Laitinen, L. Jacobs, W. M. Gold and J. A. Nadel,Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. Am. Rev. Respir. Dis.113, 131–139 (1976).PubMedGoogle Scholar
  7. [7]
    H. Inoue, S. Horio and M. Ichinose,Changes in bronchial reactivity to acetylcholine with type C influenza virus infection in dogs. Am. Rev. Respir. Dis.133, 367–371 (1986).PubMedGoogle Scholar
  8. [8]
    Y. Suzuki, T. Tanigaki, D. Heimer, W. Wang, W. G. Ross, H. H. Sussman and T. A. Raffin,Polyethylene glycolconjugated superoxide dismutase attenuates septic lung injury in guinea pigs. Am. Rev. Respir. Dis.145, 388–393 (1992).PubMedGoogle Scholar
  9. [9]
    B. A. Freeman and J. D. Crapo,Biology of disease: free radicals and tissue injury. Lab. Invest.47, 412–426 (1982).PubMedGoogle Scholar
  10. [10]
    M. K. Bach, J. R. Brashler, E. N. Petzold and M. E. Sanders,Superoxide production by human eosinophils can be inhibited in an agonist-selective manner. Agents and Actions35, 1–11 (1992).PubMedGoogle Scholar
  11. [11]
    J. Despot and R. F. Lemanske,Mast cell granule enhancement of neutrophil chemiluminescence responses. J. Lab. Clin. Med.111, 348–357 (1988).PubMedGoogle Scholar
  12. [12]
    M. J. Rock, J. Despot and R. F. Lemanske,Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism. J. Allergy Clin. Immunol.86, 452–461 (1990).PubMedGoogle Scholar
  13. [13]
    T. W. Evans, K. F. Chung, D. F. Rogers and P. J. Barnes,Effect of platelet-activating factor on airway vascular permeability: possible mechanisms. J. Appl. Physiol.63, 479–484 (1987).PubMedGoogle Scholar
  14. [14]
    H. Konzett and R. Rössler,Versuchsanordnung zu Untersuchungen an der Bronchialmuskulatur. Arch. Exp. Pathol. Pharmacol.195, 71–74 (1940).Google Scholar
  15. [15]
    K. Udaka, Y. Tatenchi and H. Movat,Simple method for quantitation of enhanced vascular permeability. Proc. Soc. Exp. Biol. Med.133, 1384–1387 (1970).PubMedGoogle Scholar
  16. [16]
    O. C. Burghuber, R. J. Strife, J. Zirrolli, P. M. Henson, J. E. Henson, M. M. Mathias, J. T. Reeves, R. C. Murphy and N. F. Voelkel,Leukotriene inhibitors attenuate rat lung injury induced by hydrogen peroxide. Am. Rev. Respir. Dis.131, 785–788 (1985).Google Scholar
  17. [17]
    J. M. Jacobson, J. R. Michael, M. H. Jafri and G. H. Gurtner,Antioxidants and antioxidant enzymes protect against pulmonary oxygen toxicity in the rabbit. J. Appl. Physiol.68, 1252–1259 (1990).PubMedGoogle Scholar
  18. [18]
    N. A. A. Van der Wal, L. L. Smith, J. F. L. M. Van Oirschot and B. Sweder van Asbeck,Effect of iron chelators on paraquat toxicity in rats and alveolar type II cells. Am. Rev. Respir. Dis.145, 180–186 (1992).PubMedGoogle Scholar
  19. [19]
    J. W. Macdonald and J. E. Heffner,Eugenol causes oxidant-mediated edema in isolated perfused rabbit lungs. Am. Rev. Respir. Dis.143, 806–809 (1991).PubMedGoogle Scholar
  20. [20]
    I. Fridovich,Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem.245, 4053–4057 (1970).PubMedGoogle Scholar
  21. [21]
    H. D. Perez, B. B. Weksler and I. M. Goldstein,Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Inflammation4, 313–328 (1980).PubMedGoogle Scholar
  22. [22]
    J. M. Harlan and K. S. Callahan,Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells. J. Clin. Invest.74, 442–448 (1984).PubMedGoogle Scholar
  23. [23]
    P. H. Sporn, M. Peters-Golden and R. H. Simon,Hydrogen peroxide-induced arachidonic acid metabolism in the rat alveolar macrophage. Am. Rev. Respir. Dis.137, 49–56 (1988).PubMedGoogle Scholar
  24. [24]
    R. Fantozzi, S. Brunelleschi, L. Giuliattini, P. Blandina, E. Masini, G. Cavallo and P. F. Mannaioni,Mast cell and neutrophil interactions: a role for superoxide anion and histamine. Agents and Actions16, 260–264 (1985).PubMedGoogle Scholar
  25. [25]
    H. Ohmori, K. Komoriya, A. Azuma, S. Kurozumi and Y. H. Oto,Xanthine oxidase-induced histamine release from isolated rat peritoneal mast cells involvement of hydrogen peroxide. Biochem. Pharmacol.28, 333–334 (1978).Google Scholar
  26. [26]
    E. Boccu, G. P. Velo and F. M. Veronese,Pharmacokinetic properties of polyethylene glycol derivatized superoxide dismutase. Pharmacol. Res. Commun.14, 113–120 (1982).PubMedGoogle Scholar
  27. [27]
    K. Wong, L. G. Cleland and M. J. Poznansky,Enhanced anti-inflammatory effect and reduced immunogenicity of bovine liver superoxide dismutase by conjugation with homologous albumin. Agents and Actions10, 231–239 (1980).PubMedGoogle Scholar
  28. [28]
    W. Huber and M. G. P. Saifer,Orgotein, the drug version bovine Cu−Zn superoxide dismutase. A summary account of safety and pharmacology in laboratory animals. InSuper-oxide and Superoxide Dismutase. (Eds. A. M. Michelson, J. M. McCord, I. Fridovich) pp. 517–536 Academic Press, New York, (1977).Google Scholar
  29. [29]
    B. Halliwell and J. M. C. Gutteridge,Oxygen toxicity, oxygen radicals transition metals and disease, Biochemistry219, 1–14 (1984).Google Scholar
  30. [30]
    K. L. Frong, P. B. McCay and J. L. Poyer,Evidence for superoxide-dependent reduction of Fe 3+ and its role in enzyme-generated hydroxyl radical formation. Chem. Biol. Interact.15, 77–89 (1976).PubMedGoogle Scholar
  31. [31]
    E. M. Link and P. A. Riley,Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system. Biochem. J.249, 391–399 (1988).PubMedGoogle Scholar
  32. [32]
    R. H. Gordonsmith, S. Brooke-Taylor, L. L. Smith and G. M. Cohen,Structural requirements of compounds to inhibit pulmonary diamine accumulation. Biochem. Pharmacol.32, 3701–3709 (1983).PubMedGoogle Scholar
  33. [33]
    W. J. Calhoun, S. M. Salisbury, R. K. Bush and W. W. Busse,Increased superoxide release from alveolar macrophages in symptomatic asthma (abstract). Am. Rev. Respir. Dis.135, A224 (1987).Google Scholar
  34. [34]
    M. Cluzel, M. Damon and P. Chanez,Enhanced alveolar cell luminol-dependent chemiluminescence in asthma. J. Allergy Clin. Immunol.80, 195–201 (1987).PubMedGoogle Scholar
  35. [35]
    J. B. Sedgwick, K. M. Geiger and W. W. Busse,Superoxide generation by hypodense eosinophils from patients with asthma. Am. Rev. Respir. Dis.142, 120–125 (1990).PubMedGoogle Scholar
  36. [36]
    B. S. Polla, R. A. Ezekowitz and D. Y. Leung,Monocytes from patients with atopic dermatitis are primed for super-oxide production. J. Allergy Clin. Immunol.89, 545–551 (1992).PubMedGoogle Scholar
  37. [37]
    P. A. Shult, F. M. Graziano and W. W. Busse,Enhanced eosinophil luminol-dependent chemiluminescence in allergic rhinitis. Am. Rev. Respir. Dis.77, 709–714 (1986).Google Scholar
  38. [38]
    W. J. Calhoun, H. E. Reed, D. R. Moest and C. A. Etevens,Enhanced superoxide production by alveolar macrophages and air-space cells airway inflammation and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. Am. Rev. Respir. Dis.145, 317–325 (1992).PubMedGoogle Scholar
  39. [39]
    D. S. Postma, T. E. J. Renkema, J. A. Noordhoek, H. Faber, H. J. Sluiter and H. Kauffman,Association between non-specific bronchial hyperreactivity and superoxide anion production by polymorphonuclear leukocytes in chronic airflow obstruction. Am. Rev. Respir. Dis.137, 57–61 (1988).PubMedGoogle Scholar
  40. [40]
    V. Mohsenin, A. B. Dubois and J. S. Douglas,Effect of ascorbic acid on response to methacholine challenge in asthmatic subjects. Am. Rev. Respir. Dis.127, 143–147 (1983).PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • M. Misawa
    • 1
  • H. Arai
    • 1
  1. 1.Department of Pharmacology, School of PharmacyHoshi UniversityTokyoJapan

Personalised recommendations