Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 48, Issue 1, pp 17–21 | Cite as

The lattice parameter of highly pure silicon single crystals

  • P. Becker
  • P. Scyfried
  • H. Siegert
Article

Abstract

From crystal to crystal comparison, thed220 lattice spacing in PERFX and WASO silicon crystals used in the only two existing absolute measurements have been found to be equal within ±2×10−7d220. This demonstrates that generic variabilities of the two crystals account only for a small part of the 1.8×10−6d220 difference in the two absolute measurements. In a new series of 336 single measurements, ourd220 value reported recently has been confirmed within ±2×10−8d220. From these results we derive the following lattice parameter for highly pure silicon single crystals:a0=(543 102.018±0.034) fm (at 22.5°C, in vacuum).

Keywords

Spectroscopy Silicon Neural Network State Physics Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deslattes, R.D., Henins, A.: Phys. Rev. Lett.31, 972 (1973)Google Scholar
  2. 2.
    Parrish, W.: Acta Cryst.13, 838 (1960)Google Scholar
  3. 3.
    Baker, J.A., Tucker, T.N., Moyer, N.E., Buschert, R.C.: J. Appl. Phys.39, 4365 (1968)Google Scholar
  4. 4.
    Bond, W.L., Kaiser, W.: Phys. Chem. Solids16, 44 (1968)Google Scholar
  5. 5.
    Ando, M., Bailey, D., Hart, M.: Acta Cryst. A34, 484 (1978)Google Scholar
  6. 6.
    Deslattes, R.D.: Private communicationGoogle Scholar
  7. 7.
    Deslattes, R.D., Henins, A., Bowman, H.A., Schoonover, R.M., Carroll, C.L., Barnes, I.L., Machlan, L.A., Moore, L.J., Shields, W.R.: Phys. Rev. Lett.33, 463 (1974)Google Scholar
  8. 8.
    Becker, P., Dorenwendt, K., Ebeling, G., Lauer, R., Lucas, W., Probst, R., Rademacher, H.-J., Reim, G., Seyfried, P., Siegert, H.: Phys. Rev. Lett.46, 1540 (1981)Google Scholar
  9. 9.
    Deslattes, R.D., Kessler, E.G., Sauder, E.C., Henins, A.: Ann. Phys.129, 378 (1980)Google Scholar
  10. 10.
    Rademacher, H.-J., Becker, P., Siegert, H., Lucas, W., Dorenwendt, K., Reim, G., Hanszen, K.-J., Lauer, R., Probst, R., Seyfried, P.: PTB-Bericht APh 13, Physikalisch-Technische Bundesanstalt, Braunschweig (1980)Google Scholar
  11. 11.
    Hanszen, K.-J., Ade, G., Lucas, W., Siegert, H., Becker, P.: PTB-Bericht APh 14, Physikalisch-Technische Bundesanstalt, Braunschweig (1981)Google Scholar
  12. 12.
    Seyfried, P.: PTB-Bericht E 18, Physikalisch-Technische Bundesanstalt, Braunschweig, p. 195 (1981)Google Scholar
  13. 13.
    Becker, P.: PTB-Bericht E 18, Physikalisch-Technische Bundesanstalt, Braunschweig, p. 217 (1981)Google Scholar
  14. 14.
    Siegert, H.: PTB-Bericht E 18, Physikalisch-Technische Bundesanstalt, Braunschweig, p. 235 (1981)Google Scholar
  15. 15.
    Hart, M.: Proc. R. Soc. London Ser. A309, 281 (1969)Google Scholar
  16. 16.
    Autocollimation telescope (manufacturer Leitz, Wetzlar) calibrated by the laboratory for angle measurements of the Physikalisch-Technische Bundesanstalt, BraunschweigGoogle Scholar
  17. 17.
    Bonse, U., Hartmann, I.: Z. Kristallogr.156, 265 (1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. Becker
    • 1
  • P. Scyfried
    • 1
  • H. Siegert
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigFederal Republic of Germany

Personalised recommendations