Advertisement

Zeitschrift für Ernährungswissenschaft

, Volume 26, Issue 4, pp 250–267 | Cite as

Biologische Verfügbarkeit von Zink in Getreidevollkornprodukten mit unterschiedlichem Phytatgehalt

  • A. E. Harmuth-Hoene
  • F. Meuser
Originalarbeiten

Zusammenfassung

Aufgrund des hohen Phytatgehaltes ist die Bioverfügbarkeit von Zink in Getreidevollkornprodukten im Vergleich zu tierischen Nahrungsmitteln deutlich herabgesetzt. In dreiwöchigen Fütterungsversuchen an wachsenden Ratten wurde geprüft, wie sich eine Reduzierung des Phytatgehaltes in Vollkornprodukten aus Roggen und Weizen auf Wachstum, Zinkgehalt in Femur und Blutserum sowie auf die Aktivität der alkalischen Phosphatase im Blutserum auswirkt. Die Reduzierung des Phytats erfolgte mit Hilfe der getreideeigenen Phytaseaktivität. Durch die getroffenen Maßnahmen verringerte sich der molare Phytinsäure/Zink-Quotient in den Vollkornprodukten von 27–37 auf 3–18. Alle 4 untersuchten Parameter zeigten eine signifikante Verbesserung der Zinkverfügbarkeit mit abnehmendem Phytinsäure/Zink-Quotienten. Die übertragbarkeit dieser Ergebnisse auf den Menschen sowie die Eignung des Phytinsäure-Zink-Quotienten als Indikator für die Zinkverfügbarkeit in Nahrungsmitteln werden diskutiert.

Schlüsselwörter

Roggen- und Weizenvollkornprodukte Zinkverfügbarkeit, Phytatreduzierung alkalischePhosphatase Femurzink Serumzink 

Summary

Due to its high phytate content, the bioavailability of zinc in whole meal cereal products is distinctly lower as compared to foods of animal origin. The effect of reducing the phytate content of cereal products made from rye and wheat on growth, zinc content of femur and blood serum, as well as on the activity of serum alkaline phosphatase was investigated during a 3-week feeding trial in growing rats. The reduction of phytate was achieved by controlling the phytase activity originally present in cereals. By these treatments, the molar phytic acid/zinc ratio in the cereal products was reduced from 27–37 to 3–18. The four parameters under investigation showed a significant improvement in zinc bioavailability with decreasing phytic acid/zinc ratios. The relevance of these results for man and the value of the molar phytic acid/zinc ratio as an indicator of the bioavailability of zinc in foods are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Reinhold JG, Faradji B, Abadi P, Ismail-Beigi F (1976) Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. J Nutr 106:493–503Google Scholar
  2. 2.
    McCance RA, Widdowson EM (1942) Mineral metabolism on dephytinized bread. J Physiol 101:304–313CrossRefGoogle Scholar
  3. 3.
    Davies NT (1982) Effects of phytic acid on mineral availability. In: Vahouny GV, Kritschewsky D (eds) Dietary Fiber in Health and Disease. Plenum Press, New York London, pp 105–116CrossRefGoogle Scholar
  4. 4.
    Fairweather-Tait SJ (1982) The effect of different levels of wheat bran on iron absorption in rats from bread containing similar amounts of phytate. Br J Nutr 47:243–249CrossRefGoogle Scholar
  5. 5.
    Anderson H, Nävert B, Bingham SA, Englyst HN, Cummings JH (1983) The effects of breads containing similar amounts of phytate but different amounts of wheat bran on calcium, zinc and iron balance in man. Br J Nutr 50:503–510CrossRefGoogle Scholar
  6. 6.
    Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv Fd Res 28:1–92CrossRefGoogle Scholar
  7. 7.
    Vohra P, Gray GA, Kratzer FH (1965) Phytic acid and metal complexes. Proc Soc Exp Biol Med 120:447–449CrossRefGoogle Scholar
  8. 8.
    De Rham O, Jost T (1979) Phytate-protein interaction in soybean extracts and low phytate soybean products. J Fd Sci 44:596–600CrossRefGoogle Scholar
  9. 9.
    O'Dell BL (1969) Effect of dietary components upon zinc availability. Am J Clin Nutr 22:1315–1322Google Scholar
  10. 10.
    Forbes RM, Parker H, Kondo H, Erdman Jr JW (1983) Availability to rats of zinc in green and mature soybeans. Nutr Res 3:699–704CrossRefGoogle Scholar
  11. 11.
    Prasad AS, Miale A Jr, Farid Z, Sandstead HH, Schubert AR, Darby WJ (1963) Biochemical studies on dwarfism, hypogonadism, and anemia. Arch Intern Med 111:407–428CrossRefGoogle Scholar
  12. 12.
    Reinhold JG (1971) High phytate content of rural Indian bread: possible cause of human zinc deficiency. Amer J Clin Nutr 24: 1204–1206Google Scholar
  13. 13.
    O'Dell BL, Savage JE (1960) Effect of phytic acid on zinc availability. Pro Soc Exp Biol Med 103:304–306CrossRefGoogle Scholar
  14. 14.
    Oberleas D, Muhrer ME, O'Dell BL (1962) Effects of phytic acid on zinc availability and parakeratosis in swine. J Anim Sci 21:57–61CrossRefGoogle Scholar
  15. 15.
    Oberleas D (1974) Factors influencing availability of minerals. In: White PL, Selvey N (eds) Proceedings of Western Hemisphere Nutrition Congress — IV. Publishing Sciences Group Inc Acton, MA, pp 156–161Google Scholar
  16. 16.
    Morris ER, Ellis R (1980) Effect of dietary phytate/zinc molar ratio on growth and bone zinc response of rats fed semipurified diets. J Nutr 110:1037–1045Google Scholar
  17. 17.
    Oberleas D, Harland BF (1981) Phytate content of foods: Effect on dietary zinc bioavailability. JAMDA 79:433–436Google Scholar
  18. 18.
    Schormüller J, Würdig G (1957) über das Vorkommen von Phytin, insbesondere in Getreide und Getreideprodukten. Dtsch Lebensmittel-Rdsch 53:1–10Google Scholar
  19. 19.
    Meuser F, Meißner U (1987) Verfahrenstechnische Maßnahmen zur Verbesserung des Phytatabbaus bei der Vollkornbrotherstellung. Ernährung/Nutrition 11:102–109Google Scholar
  20. 20.
    Asp NG, Johansson CG, Hallmer H, Siljeström M (1983) Rapid enzymatic assay of insoluble and soluble dietary fiber. J Agric Food Chem 31:476–482CrossRefGoogle Scholar
  21. 21.
    Holt R (1955) Studies on dried peas. I. The determination of phytate phosphorus. J Sci Agric 6:136–142CrossRefGoogle Scholar
  22. 22.
    SAS Institute Inc. SASR (1985) User's Guide: Statistics Version, 5 Edition, Cary, NCGoogle Scholar
  23. 23.
    Roth HP, Kirchgessner M (1979) Experimentelle Untersuchungen zur Diagnose von marginalem Zinkmangel. Res Exp Med (Berl) 174:283–300CrossRefGoogle Scholar
  24. 24.
    Davies NT, Olpin SE (1978) Studies on the phytate: zinc molar contents in diets as a determinant of Zn availability to young rats. Br J Nutr 41:591–603CrossRefGoogle Scholar
  25. 25.
    Morris ER, Ellis R (1980) Bioavailability to rats of iron and zinc in wheat bran: Response to low phytate bran and effect of the phytate/zinc molar ratio. J Nutr 110:2000–2010Google Scholar
  26. 26.
    Likuski HJ, Forbes RM (1965) Mineral utilization in the rat. IV Effects of calcium and phytic acid on the utilization of dietary zinc. J Nutr 85:230–234Google Scholar
  27. 27.
    Kirchgessner M, Roth HP (1975) Beziehungen zwischen klinischen Mangelsymptomen und Enzymaktivitäten bei Zinkmangel. Zentralbl Veterinärmed Reihe A 22:14–26Google Scholar
  28. 28.
    Oberleas D, Prasad AS (1969) Growth as affected by zinc and protein nutrition. Amer J Clin Nutr 22:1304–1314Google Scholar
  29. 29.
    Pallauf J (1978) Effect of zinc deficiency on digestibility and utilization of nutrients. In: Kirchgessner M (ed) Trace Element Metabolism in Man and Animals-3. Arbeitskreis für Tierernährungsforschung, Weihenstephan, 218–221Google Scholar
  30. 30.
    Wilkins PJ, Gray PC, Dreosti IE (1972) Plasma zinc as an indicator of zinc-status in rats. Br J Nutr 27:113–120CrossRefGoogle Scholar
  31. 31.
    Parisi AF, Vallee BL (1970) Isolation of a zinc α2-macroglobulin from human serum. Biochemistry 9:2421–2426CrossRefGoogle Scholar
  32. 32.
    Rader JI, Tao SH, Gaston CM, Wolnik KA, Fricke FL, Fox MRS (1985) Effects of phytic acid on bioavailability of trace elements in soy or casein-gelatin diets fed to weanling rats. In: Mills CF, Bremner I, Chesters JK (eds) Trace Elements in Man and Animals 5. Commonwealth Agric Bureaux, UK, 458–460Google Scholar
  33. 33.
    Franz KB, Kennedy BM, Fellers DA (1980) Relative bioavailability of zinc from selected cereals and legumes using rat growth. J Nutr 110:2272–2283Google Scholar
  34. 34.
    Nävert B, Sandström B (1985) Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. Br J Nutr 53:47–53CrossRefGoogle Scholar
  35. 35.
    Forbes RM, Erdmann JW Jr, Parker HM, Kondo H, Ketelsen SM (1983) Bioavailability of zinc in coagulated soy protein (tofu) to rats and effect of dietary calcium at a constant phytate: zinc ratio. J Nutr 113:205–210Google Scholar
  36. 36.
    Wise A (1985) Dietary calcium influences the location and extent of phytate hydrolysis in the rat intestine. In: Mills CF, Bremner I, Chesters JK (eds) Trance Elements in Man and Animals 5. Commonwealth Agric Bureaux, UK, 468–470Google Scholar
  37. 37.
    Davies NT, Carswell AJP, Mills CF (1985) The effect of variation in dietary calcium intake on the phytate-zinc interaction in rats. In: Mills CF, Bremner I, Chester JK (eds) Trace Elements in Man and Animals 5. Commonwealth Agric Bureaux, UK, 456–457Google Scholar
  38. 38.
    Sandström B, Arvidsson B, Cederblad A, Björn-Rasmussen E (1980) Zinc absorption from composite meals I. The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. Am J Clin Nutr 33:739–745Google Scholar
  39. 39.
    Reinhold JG (1971) High phytate content of rural Iranian bread: A possible cause of human zinc deficiency. Am J Clin Nutr 24:1204–1206Google Scholar
  40. 40.
    Prasad AS, Miale A, Farid Z, Schulert A, Sandstead HH (1963) Zinc metabolism in normals and patients with the syndrome of iron deficiency anemia, hypogonadism and dwarfism. J Lab Clin Med 61:537–549Google Scholar
  41. 41.
    Hambidge KM, Walravens PA, Brown RM, Webster J, White S, Anthony M, Roth ML (1976) Zinc nutrition of preschool children in the Head Start program. Am J Clin Nutr 29:734–739Google Scholar
  42. 42.
    Hutton CW, Hayes-Davis RB (1983) Assessment of the zinc nutritional status of selected elderly subjects. J Am Diet Ass 82:148–153Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1987

Authors and Affiliations

  • A. E. Harmuth-Hoene
    • 1
    • 2
  • F. Meuser
    • 1
    • 2
  1. 1.Institut für BiochemieBundesforschungsanstalt für ErnährungKarlsruhe
  2. 2.Institut für Lebensmitteltechnologie - GetreidetechnologieTechnische Universität BerlinDeutschland

Personalised recommendations