Advertisement

Zeitschrift für Ernährungswissenschaft

, Volume 28, Issue 3, pp 191–200 | Cite as

Cystinhaltige kurzkettige Peptide als potentielle Cystinquelle in der parenteralen Ernährung

  • L. Pollack
  • P. Stehle
  • S. Albers
  • P. Fürst
Originalarbeiten
  • 26 Downloads

Zusammenfassung

Erstmalig wurde die in vivo-Verwertung von zwei sehr gut löslichen und thermisch stabilen cystinhaltigen synthetischen Peptiden, N, N′-Bis-L-Alanyl-L, L-cystin und N, N′-Bis-Glycyl-L, L-cystin, bei Ratten untersucht. Nach Verabreichung eines intravenösen Peptidbolus wurden innerhalb von 5 Minuten mehrmals Blutproben aus der Vena cava inferior entnommen und die Plasmakonzentrationen der Aminosäuren/Peptide mittels RP-HPLC nach Vorsäulenderivatisierung mit Dansyl-Chlorid bestimmt. Das injizierte Peptid wurde jeweils rasch aus dem Plasma eliminiert (geschätzte Eliminationshalbwertszeit: 4 min für das Glycylpeptid und weniger als 2 min für das Alanylpeptid). Die hohen Anfangskonzentrationen an den unsymmetrischen Disulfiden N-L-Alanyl-L, L-cystin bzw. N-Glycyl-L, L-cystin sowie der sofortige Anstieg der freien Aminosäuren Alanin, Glycin und Cystin weisen auf eine sehr schnelle, in zwei Stufen ablaufende Hydrolyse der Peptide im Extrazellulärraum hin, vermutlich katalysiert durch gelöste und/oder plasmamembrangebundene Peptidasen. Die beobachtete rasche Hydrolyse kann als erster Beweis dafür dienen, daß kurzkettige Peptide mit C-terminalem Cystinrest als Quellen für freies Cystin im Rahmen einer parenteralen Ernährung eingesetzt werden können.

Schlüsselwörter

Cystin Peptide In vivo-Verwertung parenterale Ernährung 

Summary

For the first time, in vivo utilization of two highly soluble and stable cystine containing synthetic short chain peptides, N, N′-bis-L-alanyl-L, L-cystine and N, N′-bis-glycyl-L, L-cystine, was investigated in adult rats. Within 5 min after an intravenous bolus, blood samples were drawn (inferior vena cava) and plasma amino acid and peptide levels were determined using RP-HPLC (precolumn derivatization with 1-dimethylaminonaphthalene-5-sulfonylchloride). Both peptides were rapidly cleared from plasma (estimated elimination time: 4 min for the glycyl peptide and less than 2 min for the alanyl peptide). The initial high amounts of N-L-alanyl-L, L-cystine and N-glycyl-L, L-cystine as well as the prompt increase of the constituent free amino acids alanine, glycine and cystine strongly suggest that the peptide disappearance is mainly due to a very fast two-step hydrolysis in the extracellular compartment, presumably catalyzed by soluble and/or plasma membrane bound peptidases. The observed rapid hydrolysis may serve as first evidence that short chain peptides with C-terminal cystine residue may represent efficient sources of free cystine in parenteral nutrition.

Key words

cystine peptides in vivo utilization parenteral nutrition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adibi SA (1987) Experimental basis for use of peptides as substrates for parenteral nutrition: a review. Metabolism 36:1001–1011CrossRefGoogle Scholar
  2. 2.
    Adibi SA, Krzysik BA (1977) Effect of nephrectomy and enterectomy on plasma clearance of intravenously administered dipeptides in rat. Clin Sci Mol Med 52:205–213Google Scholar
  3. 3.
    Adibi SA, Morse EL (1982) Enrichment of glycine pool in plasma and tissue by glycine, di-, tri- and tetraglycine. Am J Physiol 243:413–117Google Scholar
  4. 4.
    Adibi SA, Paleos GA, Morse EL (1986) Influence of molecular structure on half-life and hydrolysis of dipeptides in plasma: importance of glycine as N-terminal amino acid residue. Metabolism 35:830–836CrossRefGoogle Scholar
  5. 5.
    Albers S, Wernerman J, Stehle P, Vinnars E, Fürst P (1988) Availability of amino acids supplied intravenously in healthy man as synthetic dipeptides. Kinetic evaluation of L-alanyl-L-glutamine and glycyl-L-tyrosine. Clin Sci 75:463–468CrossRefGoogle Scholar
  6. 6.
    Albers S, Wernerman J, Stehle P, Vinnars E, Fürst P (1989) Availability of amino acids supplied by constant intravenous infusion of synthetic dipeptides in healthy man. Clin Sci 76:643–648CrossRefGoogle Scholar
  7. 7.
    Bergström J, Fürst P, Noree LO, Vinnars E (1974) The intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36:693–697Google Scholar
  8. 8.
    Bonnetti G, Iapichino G, Radrizzani D, Scherini A, Malacrida R, Ronzoni G, Damia G (1988) Methionine, cystathionine and cystine increased urinary losses during total parenteral nutrition of adult patients. Clin Nutr 7:43–48CrossRefGoogle Scholar
  9. 9.
    Chawla RK, Lewis FW, Kutner MH, Bate DM, Roy RGB, Rudman D (1984) Plasma cysteine, cystine and glutathione in cirrhosis. Gastroenterology 87:770–776Google Scholar
  10. 10.
    Cox CE, Beazley RM (1975) Chronic venous catheterization: A technique for implanting and maintaining venous catheters in rats. J Surg Res 104:330–332Google Scholar
  11. 11.
    Fürst P (1985) Peptides in parenteral nutrition. Clin Nutr 4 (spec suppl):105–115CrossRefGoogle Scholar
  12. 12.
    Fürst P, Albers S, Stehle P, Pollack L, Mertes N, Puchstein C (1988) Parenteral use of L-alanyl-L-glutamine (Ala-Gln) and glycyl-L-tyrosine (Gly-Tyr) in post-operative patients. Clin Nutr 7 (spec suppl):41Google Scholar
  13. 13.
    Fürst P, Stehle P, Graser TA (1987) Fortschritte in der Aminosäure-Analytik unter besonderer Berücksichtigung der Ermittlung intrazellulärer Aminosäuremuster. Infusionsther 14:137–146Google Scholar
  14. 14.
    Gaull G, Sturman JA, Räihä NCR (1972) Development of mammalian sulfur metabolism: Absence of cystathionase in human fetal tissues. Pediat Res 6:538–547CrossRefGoogle Scholar
  15. 15.
    Godel H, Graser TA, Földi P, Pfaender P, Fürst P (1984) Measurement of free amino acids in human biological fluids by high-performance liquid chromatography. J Chromatogr 297:49–61CrossRefGoogle Scholar
  16. 16.
    Graser TA, Godel H, Stehle P, Pfaender P, Fürst P (1984) Einsatz der HPLC zur Kontrolle der Peptidsynthese und nachfolgender Reinigungsschritte. In: Aigner H (Hrsg) Königsteiner Chromatographie-Tage. Waters, Eschborn, S 140–155Google Scholar
  17. 17.
    Graser TA, Godel HG, Albers S, Földi P, Fürst P (1985) An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids. Anal Biochem 151:142–152CrossRefGoogle Scholar
  18. 18.
    Hundal HS, Rennie M (1988) Skeletal muscle tissue contains extracellular aminopeptidase activity against Ala-Gin but no peptide transporter. Europ J Clin Invest 18 A34:163Google Scholar
  19. 19.
    Irwin MJ, Hegsted DM (1971) A conspectus of research on amino acid requirements of man. J Nutr 101:539–566Google Scholar
  20. 20.
    Karner J, Roth E, Karner-Hanusch J, Kovats E, Fürst P, Funovics J, Fritsch A (1987) Organspezifische invivo-Dipeptidverwertung (Alanyl-glutamin, Glyzylglutamin) beim katabolen Hund. Contr Infusion Ther Clin Nutr 17:137–143Google Scholar
  21. 21.
    Krzysik BA, Adibi SA (1979) Comparison of metabolism of glycine injected intravenously in free and dipeptide form. Metabolism 28:1211–1217CrossRefGoogle Scholar
  22. 22.
    Lochs M, Morse EL, Adibi SA (1986) Mechanism of hepatic assimilation of dipeptides. Transport vs. hydrolysis. J Biol Chem 261:14976–14981Google Scholar
  23. 23.
    Pohlandt F (1974) Cystine: A semi-essential amino acid in the newborn infant. Acta Paediatr Scand 63:801–804CrossRefGoogle Scholar
  24. 24.
    Rudman D, Chawla RK, Bleier JC (1983) Cystine and tyrosine requirements during the nutritional depletion of cirrhotic patients. In: Blackburn GL, Grant JP, Young VR (eds) Amino acids: metabolism and medical applications. John Wright, Boston Bristol London, pp 484–496Google Scholar
  25. 25.
    Rudman D, Kutner M, Ansley J, Jansen R, Chipponi J, Bain RP (1981) Hypotyrosinemia, hypocystinemia and failure to retain nitrogen during total parenteral nutrition of cirrhotic patients. Gastroenterology 81:1025–1035Google Scholar
  26. 26.
    Snyderman SE (1975) Recommendations for parenteral amino acid requirements. In: Winters RW, Hasselmeyer EG (eds) Intravenous nutrition in the high risk infant. John Wiley, New York, p 422Google Scholar
  27. 27.
    Stegink LD, Baker GL (1971) Infusion of protein hydrolysates in the newborn infant: Plasma amino acid concentrations. J Pediat 78:595–603CrossRefGoogle Scholar
  28. 28.
    Stegink LD (1975) Amino acid metabolism. In: Winters RW, Hasselmeyer EG (eds) Intravenous nutrition in the high-risk infant. John Wiley, New York, pp 181–203Google Scholar
  29. 29.
    Stegink L, DenBesten L (1972) Synthesis of cystine from methionine in normal adult subjects. Effect of route of alimentation. Science 178:514–516CrossRefGoogle Scholar
  30. 30.
    Stehle P, Bahsitta HP, Fürst P (1986) Analytical control of enzyme-catalyzed peptide synthesis using capillary isotachophoresis. J Chromatogr 370:131–138CrossRefGoogle Scholar
  31. 31.
    Stehle P, Kühne B, Kubin W, Fürst P, Pfaender P (1982) Synthesis and characterization of tyrosine- and glutamine-containing peptides. J Appl Biochem 4:280–286Google Scholar
  32. 32.
    Stehle P (1988) Bedarfsgerechte Bereitstellung von kurzkettigen Peptiden — eine Voraussetzung für deren Einsatz in der künstlichen Ernährung. Infusionsther 15:27–32Google Scholar
  33. 33.
    Stehle P, Fürst P (1985) Isotachophoretic control of peptide synthesis and purification. A novel approach using ultraviolet detection at 206 nm. J Chromatogr 346:271–279CrossRefGoogle Scholar
  34. 34.
    Stehle P, Bohlmann F, Fürst P (1988) Peptide hydrolase activity of human plasma. In vitro cleavage of glutamine-, tyrosine- and cystine-containing short chain peptides. Clin Nutr 7 (spec suppl):40Google Scholar
  35. 35.
    Sturman JA, Gaull G, Räihä NCR (1970) Absence of cystathionase in human fetal liver. Is cystine essential? Science 169:74–75CrossRefGoogle Scholar
  36. 36.
    Tapuhi Y, Schmidt DE, Lindner W, Karger BL (1981) Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115:123–129CrossRefGoogle Scholar
  37. 37.
    Zlotkin SH, Bryan MA, Anderson GH (1981) Cystine supplementation of cystine-free intravenous feeding regimens in newborn infants. Am J Clin Nutr 34:914–923Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1989

Authors and Affiliations

  • L. Pollack
    • 1
  • P. Stehle
    • 1
  • S. Albers
    • 1
  • P. Fürst
    • 1
  1. 1.Institut für Biologische Chemie und ErnährungswissenschaftUniversität HohenheimStuttgart

Personalised recommendations