Advertisement

Zeitschrift für Ernährungswissenschaft

, Volume 29, Issue 3, pp 162–168 | Cite as

Effects of short chain fatty acids and K on absorption of Mg and other cations by the colon and caecum

  • E. Scharrer
  • T. Lutz
Originalarbeiten

Summary

The influence of short chain fatty acids (SCFA) on Mg, Na, and water absorption was studied in the rat distal colon and caecum using an in vivo luminal perfusion technique. The effect of SCFA on K absorption by the distal colon and the effect of K on Mg absorption by the distal colon and caecum were also investigated.

Butyrate (60 mmol/l) or a mixture of SCFA (60 mmol/l acetate, 20 mmol/l propionate, 10 mmol/l butyrate) stimulated Mg and K absorption by the distal colon, while Na and water absorption was not affected. The effect on Mg absorption was pH-dependent. In the caecum, butyrate enhanced Na and water absorption, but not Mg absorption. Acetate (60 mmol/l) did not influence electrolyte absorption by either intestinal segment. K (30 mmol/l) inhibited Mg absorption by the distal colon, but not by the caecum.

It is concluded from these findings that SCFA deriving from fermentation of carbohydrates in the large intestine stimulate Mg, K, and Na absorption by delivering protons to Mg++/H+, K+/H+ and Na+/H+ exchangers located in the apical membrane of the epithelium. K seems to inhibit Mg absorption in the colon by affecting a mechanism which does not respond to SCFA.

Key words

Mg absorption Na absorption K absorption short chain fatty acids colon caecum 

Abbreviation index

SCFA

Short chain fatty acids

Zusammenfassung

Im distalen Kolon und Zäkum der Ratte wurde der Einfluß von kurzkettigen Fettsäuren (SCFA) auf die Mg-, Na- und Wasserabsorption mittels luminaler Perfusion der Darmsegmente in vivo untersucht. Der Effekt kurzkettiger Fettsäuren auf die K-Absorption im distalen Kolon sowie von K auf die Mg-Absorption im distalen Kolon und Zäkum wurde ebenfalls geprüft.

Butyrat (60 mmol/l) sowie eine Mischung von SCFA (60 mmol/l Azetat, 20 mmol/l Propionat, 10 mmol/l Butyrat) stimulierten die Mg- und K-Absorption im distalen Kolon, während die Na- und Wasserabsorption unbeeinflußt blieben. Der Effekt auf die Mg-Absorption war pH-abhängig. Im Zäkum steigerte Butyrat die Na- und Wasserabsorption, nicht jedoch die Mg-Absorption. Azetat (60 mmol/l) beeinflußte die Elektrolytabsorption in beiden Darmsegmenten nicht. K (30 mmol/l) hemmte die Mg-Absorption im distalen Kolon, nicht jedoch im Zäkum.

Aus diesen Befunden wird geschlossen, daß die bei der Fermentation von Kohlenhydraten im Dickdarm anfallenden kurzkettigen Fettsäuren die Mg-, K- und Na-Absorption durch Bereitstellung von Protonen für die in der apikalen Membran des Epithels lokalisierten Mg++/H+-, K+/H+- und Na+/H+-Austauscher stimulieren. K scheint im Kolon die Absorption von Mg durch Beeinträchtigung eines Mechanismus zu hemmen, der nicht auf kurzkettige Fettsäuren anspricht.

Schlüsselwörter

Mg-Absorption Na-Absorption K-Absorption kurzkettige Fettsäuren Kolon Zäkum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argenzio RA, Miller N, von Engelhardt W (1975) Effect of volatile fatty acids on water and ion absorption from the goat colon. Am J Physiol 229:997–1002Google Scholar
  2. 2.
    Argenzio RA, Whipp SC (1979) Inter-relationship of sodium, chloride, bicarbonate and acetate transport by the colon of the pig. J Physiol 295:365–381CrossRefGoogle Scholar
  3. 3.
    Behar J (1974) Magnesium absorption by the rat ileum and colon. Am J Physiol 277:334–340Google Scholar
  4. 4.
    Binder H, Sandle GI (1987) Electrolyte absorption and secretion in the mammalian colon. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract, Vol.2. Raven Press, New York, pp 1389–1418Google Scholar
  5. 5.
    Brannan PG, Vergne-Marini P, Pak ChYC, Hull AR, Fordtran JS (1976) Magnesium absorption in the human small intestine. J Clin Invest 57:1412–1418CrossRefGoogle Scholar
  6. 6.
    Bugaut M (1987) Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol 86B:439–472Google Scholar
  7. 7.
    Chutkow JG (1964) Sites of magnesium absorption and excretion in the intestinal tract of the rat. J Lab Clin Med 63:71–79Google Scholar
  8. 8.
    Demigné Ch, Rémésy Ch (1985) Stimulation of absorption of volatile fatty acids and minerals in the caecum of rats adapted to a very high fiber diet. J Nutr 115:53–60Google Scholar
  9. 9.
    Edmonds CJ (1967) The gradient of electrical potential difference and of sodium and potassium of the gut contents along the caecum and colon of normal and sodium-depleted rats. J Physiol 193:571–588CrossRefGoogle Scholar
  10. 10.
    Engelhardt von W, Luciano L, Reale E, Gros G, Rechkemmer G (1989) Transport of SCFA across the large intestinal epithelium of guinea pig. Acta Vet Scand Suppl 86:103–106Google Scholar
  11. 11.
    Foster ES, Hayslett JP, Binder HJ (1984) Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol 246:G611-G617Google Scholar
  12. 12.
    Fromm M, Hegel U (1978) Segmental heterogeneity of epithelial transport in rat large intestine. Pflügers Arch 378:71–83CrossRefGoogle Scholar
  13. 13.
    Fromm M, Hegel, U (1984) Aldosterone action in different segments of large intestine In: Skadhauge E, Heintze KJ (eds) Intestinal Absorption and Secretion. MTP Press Ltd, Lancaster, pp 233–249Google Scholar
  14. 14.
    Karbach U (1989) Magnesium transport across colon ascendens of the rat. Dig Dis Sci 34:1825–1831CrossRefGoogle Scholar
  15. 15.
    Karbach U (1989) Cellular-mediated and diffusive magnesium transport across the descending colon in the rat. Gastroenterology 96:1282–1289CrossRefGoogle Scholar
  16. 16.
    Lutz T, Würmli R, Scharrer E (1990) Short chain fatty acids stimulate magnesium absorption by the colon. Proc. 3rd European Congress on Magnesium, Ed. Lasserre B (in press)Google Scholar
  17. 17.
    Martens H (1981) Neue Erkenntnisse über den Magnesiumstoffwechsel bei Wiederkäuern. Übers Tierernährung 9:233–258Google Scholar
  18. 18.
    Martens H, Heggemann G, Regier K (1988) Studies of the effect of K, Na, NH4 +, VFA and CO2 on the net absorption of magnesium from temporarily isolated rumen of heifers, J Vet Med A 35:73–80CrossRefGoogle Scholar
  19. 19.
    Meneely R, Leeper L, Chishan FK (1982) Intestinal maturation: in vivo Mg transport. Pediat Res 16:295–298CrossRefGoogle Scholar
  20. 20.
    Petith MM, Schedl HP (1978) Effects of magnesium deficiency and duodenal and ileal magnesium absorption and secretion. Am J Dig Dis 23:1–5CrossRefGoogle Scholar
  21. 21.
    Rayssiguier Y, Rémésy Ch (1977) Magnesium absorption in the caecum of rats related to volatile fatty acids production. Ann Rech Vét 8:105–110Google Scholar
  22. 22.
    Rönnau K, Guth D, von Engelhardt W (1989) As borption of dissociated and undissociated fatty acids across the colonic epithelium of guinea pig. Quart J exp Physiol 14:511–519CrossRefGoogle Scholar
  23. 23.
    Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt JR G (1980) Absorption of short-chain fatty acids by the colon. Gastroenterology 78:1500–1507Google Scholar
  24. 24.
    Scharrer E, Schneider B (1988) Inhibitory effect of potassium on magnesium absorption by the rat colon. Nutr Rep Internat 37:197–202Google Scholar
  25. 25.
    Schünemann C, Lass N, Meyer H (1989) Intestinaler Stoffwechsel von Calcium, Magnesium und Phosphor beim Hund. J Anim Physiol Anim Nutr 61:193–205CrossRefGoogle Scholar
  26. 26.
    Watanabe T, Suzuki T, Suzuki Y (1990) Ouabain-sensitive K+-ATPase in epithelial cells from guinea pig distal colon. Am J Physiol 258:G506-G511Google Scholar
  27. 27.
    Wolffram S, Ardüser F, Scharrer E (1985) In vivo intestinal absorption of selenate and selenite in rats. J Nutr. 115:454–459Google Scholar
  28. 28.
    Würmli R, Wolffram S, Scharrer E (1990) Inhibition of Na+ absorption from the large intestine by NH+ 4. Adv Anim Physiol Anim Nutr (in press)Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1990

Authors and Affiliations

  • E. Scharrer
    • 1
  • T. Lutz
    • 1
  1. 1.Institut für Veterinär-PhysiologieUniversität ZürichSchweiz

Personalised recommendations