On chromatic number of graphs and set-systems

  • P. Erdős
  • A. Hajnal


Chromatic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Berge,Thèorie des graphes et ses application (Paris, Dunod, 1958).Google Scholar
  2. [2]
    N. G. de Bruijn andP. Erdős, A colour problem for infinite graphs and a problem in the theory of relations,Indag. Math.,13 (1951), pp. 371–373.Google Scholar
  3. [3]
    G. Dirac, Some theorems on abstract graphs,Proc. London Math. Soc., (3),2 (1952), pp. 69–81.Google Scholar
  4. [4]
    P. Erdős, Graph theory and probability,Canad. J. Math.,11 (1959), pp. 34–38.Google Scholar
  5. [5]
    P. Erdős andA. Hajnal, On a property of families of sets,Acta Math. Acad. Sci. Hung.,12 (1961), pp. 87–123.Google Scholar
  6. [6]
    P. Erdős andA. Hajnal, Some remarks on set theory IX,Michigan Math. Journal,11 (1964), pp. 107–127.Google Scholar
  7. [7]
    P. Erdős andR. Rado, A construction of graphs without triangles having pre-assigned order and chromatic number,The Journal of the London Math. Soc.,35 (1960), pp. 445–448.Google Scholar
  8. [8]
    G. Fodor, Proof of a conjecture of P. Erdős,Acta Sci. Math.,14 (1951), pp. 219–227.Google Scholar
  9. [9]
    T. Gallai, Graphen mit triangulierbaren ungeraden Vielecken,Publ. Math. Inst. Hung.,7. A. (1962), pp. 3–36.Google Scholar
  10. [10]
    H. J. Kiesler andA. Tarski, From accessible to inaccessible cardinals,Fundamenta Mathematicae,53 (1964), pp. 225–307.Google Scholar
  11. [11]
    E. W. Miller, On a property of families of sets,Comptes Rendus Varsowie,30 (1937), pp. 31–38.Google Scholar
  12. [12]
    J. Mycielski, Sur le coloriege des graphs,Colleg. Math.,3 (1955), pp. 161–162.Google Scholar
  13. [13]
    A. Tarski, Sur la decomposition des ensembles en sous ensembles presque disjoint,Fundamenta Math.,14 (1929), pp. 205–215.Google Scholar
  14. [14]
    Blanche Descartes, “A three colour problem”,Eureka (April 1947) (Solution March 1948) and “Solution to Advanced Problem No. 4526”,Amer. Math. Monthly,61 (1954), p. 352.Google Scholar
  15. [15]
    P. Erdős, On circuits and subgraphs of chromatic graphs,Mathematika,9 (1962), pp. 170–175.Google Scholar
  16. [16]
    A. Hajnal, On the topological product of discrete spaces,Notices of the Amer. Math. Soc.,11 (1964), p. 578; and On the α-incompactness of the topological product of discrete spaces and some related problems,Fundamenta Mathematicae (to appear).Google Scholar
  17. [17]
    P. Erdős, A. Hajnal andR. Rado, Partition relations for cardinal numbers,Acta Math. Acad. Sci. Hung.,16 (1965), pp. 93–196.Google Scholar
  18. [18]
    A. W. Hales andR. I. Jewett, Regularity and positional games,Trans. Amer. Math. Soc.,106 (1963), pp. 222–229.Google Scholar
  19. [19]
    A. A. Zykov, On some properties of linear complexes,Russian Math. Sbornik, N. S. 24 (66) (1949), pp. 163–188.Google Scholar

Copyright information

© Akadémiai Kiadó 1966

Authors and Affiliations

  • P. Erdős
    • 1
  • A. Hajnal
    • 1
  1. 1.Budapest

Personalised recommendations