Advertisement

Representations for real numbers and their ergodic properties

  • A. Rényi
Article

Keywords

Real Number Ergodic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    B. H. Bissinger, A generalization of continued fractions,Bulletin of the Amer. Math. Soc.,50 (1944), pp. 868–876.Google Scholar
  2. [2]
    C. I. Everett, Representations for real numbers,Bulletin of the Amer. Math. Soc.,52 (1946), pp. 861–869.Google Scholar
  3. [3]
    W. Bolyai,Tentamen iuventutem studiosam in elementa matheseos purae elementaris ac sublimioris methodo intuitiva evidentiaque huic propria introducendi, ed. sec. (Budapest, 1897), Vol. I.Google Scholar
  4. [4]
    Gy. Farkas, A Bolyai-féle algoritmus,Értekezések a matematikai tudományok köréből,8 (1881), pp. 1–8, further seeP. Veres, A Bolyai-féle algoritmus,Mennyiségtani és Term. Tud. Didaktikai Lapok,1 (1943), pp. 57–62.Google Scholar
  5. [5]
    É. Borel, Les probabilités dénombrables et leurs applications arithmétiques,Rendiconti del Circ. Mat. di Palermo,27 (1909), pp. 247–271.Google Scholar
  6. [6]
    D. Raikoff, On some arithmetical properties of summable functions,Mat. Sbornik,1 (1936), pp. 377–384.Google Scholar
  7. [7]
    R. O. Kuzmin, Sur un problème de Gauss,Atti del Congresso Internazionale del Matematici Bologna, (1928), Vol. VI, pp. 83–89.Google Scholar
  8. [8]
    P. Lévy,Théorie de l'addition des variables aléatoires (Paris, 1954), Ch. IX, pp. 290.Google Scholar
  9. [9]
    A. Khintchine, Metrische Kettenbruchprobleme,Comp. Math.,1 (1935), pp. 359–382.Google Scholar
  10. [10]
    A. Khintchine, Zur metrischen Kettenbruchtheorie,Comp. Math.,3 (1936), pp. 276–285.Google Scholar
  11. [11]
    A. Khintchine,Kettenbrüche (Leipzig, 1956).Google Scholar
  12. [12]
    C. Ryll-Nardzewski, On the ergodic theorems. II. Ergodic theory of continued fractions,Studia Math.,12 (1951), pp. 74–79.Google Scholar
  13. [13]
    S. Hartman E. Marczewski C. Ryll-Nardzewski, Théorèmes ergodiques et leurs applications,Coll. Math.,2 (1951), pp. 109–123.Google Scholar
  14. [14]
    S. Hartman, Quelques propriétés ergodiques des fractions continues,Studia Math.,12 (1951), pp. 271–278.Google Scholar
  15. [15]
    F. Riesz, Sur la théorie ergodique,Commentarii Math. Helv.,1 (1944–45), pp. 221–239.Google Scholar
  16. [16]
    A. Rényi, Valós számok előállítására szolgáló algoritmusokról,MTA Mat. és. Fiz. Oszt. Közl.,7 (1957), pp. 265–293.Google Scholar
  17. [17]
    N. Dunford andD. S. Miller, On the ergodic theorem,Trans. Amer. Math. Soc.,60 (1946), pp. 538–549.Google Scholar
  18. [18]
    F. Riesz, On a recent generalization of G. D. Birkhoff's ergodic theorem,Acta Sci. Math. Szeged,11 (1948), pp. 193–200.Google Scholar
  19. [19]
    K. Knopp, Mengentheoretische Behandlung einiger. Probleme der diophantischen Approximationen und der transfiniten. Wahrscheinlichkeiten,Math. Annalen,95 (1926), pp. 409–426.Google Scholar

Copyright information

© Akadémiai Kiadó 1957

Authors and Affiliations

  • A. Rényi
    • 1
  1. 1.Budapest

Personalised recommendations