Advertisement

Maximum-Minimum Sätze über Graphen

  • T. Gallai
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    G. B. Dantzig andD. R. Fulkerson, On the max-flow min-cut theorem of networks, Linear Inequalities and Related Systems,Annals of Math. Study,38 (1956), S. 215–221.Google Scholar
  2. [2]
    R. P. Dilworth, A decomposition theorem for partially ordered sets,Annals of Math.,51 (1950), S. 161–166.Google Scholar
  3. [3]
    J. Egerváry, Matrixok kombinatorikus tulajdonságairól,Mat. és Fiz. Lapok,38 (1931), S. 16–27.Google Scholar
  4. [4]
    Ky Fan, On systems of linear inequalities,Annals of Math. Study,38 (1956), S. 99–156.Google Scholar
  5. [5]
    L. R. Ford, Jr. andD. R. Fulkerson, Maximal flow through a network,Canadian Journal of Math.,8 (1956), S. 399–404.Google Scholar
  6. [6]
    L. R. Ford, Jr. andD. R. Fulkerson, A simple algorithm for finding maximal network flows and an application to the Hitchcock problem,Canadian Journal of Math.,9 (1957), 210–218.Google Scholar
  7. [7]
    D. Gale, A theorem on flows in networks,Pacific Journal of Math.,7 (1957), S. 1073–1082.Google Scholar
  8. [8]
    T. Gallai, Ein neuer Beweis eines Mengerschen Satzes,Journal London Math. Soc.,13 (1938), S. 188–192.Google Scholar
  9. [9]
    T. Gallai, Gráfokkal kapcsolatos maximum-minimum tételek. I,MTA Mat. és Fiz. Oszt. Közl.,7 (1957), S. 305–338.Google Scholar
  10. [10]
    T. Gallai, Gráfokkal kapcsolatos maximum-minimum tételek. II,MTA Mat. és Fiz. Oszt. Közl.,8 (1958), S. 1–40.Google Scholar
  11. [11]
    A. J. Goldman andA. W. Tucker, Theory of linear programming,Annals of Math. Study,38 (1956), S. 53–97.Google Scholar
  12. [12]
    A. J. Hoffmann andJ. B. Kruskal, Integral boundary points of convex polyhedra,Annals of Math. Study,38 (1956), S. 223–246.Google Scholar
  13. [13]
    D. König,Theorie der endlichen und unendlichen Graphen (Leipzig, 1936).Google Scholar
  14. [14]
    K. Menger,Kurventheorie (Leipzig und Berlin, 1932), S. 221–228.Google Scholar
  15. [15]
    O. Ore, Studies on directed graphs. I,Annals of Math.,63 (1956), S. 383–406.Google Scholar
  16. [16]
    W. T. Tutte, The I-factors of oriented graphs,Proc. Amer. Math. Soc.,4 (1953), S. 922–931.Google Scholar

Copyright information

© Akadémiai Kiadó 1958

Authors and Affiliations

  • T. Gallai
    • 1
  1. 1.Budapest

Personalised recommendations