Metabolic studies on scorbutic guinea pigs

IV. Fatty acid metabolism in vitro
  • R. Guchhait
  • B. C. Guha
  • N. C. Ganguli


  1. 1.

    The tissue weight and fatty acid concentration were observed to be higher in the case of scorbutic guinea pigs compared to the pair-fed control animals. Amongst the tissues analysed, maximum increase in fatty acid level was found with the liver tissue.

  2. 2.

    Fatty acid synthesis by the scorbutic tissuein vitro was diminished. Both tissue homogenates and slices had less capacity to convert acetate-1-14C to labeled fatty acids. The specific activities of the synthesised fatty acids by tissues of scorbutic guinea pigs were appreciably less than that synthesised by the corresponding tissue preparations from the pairfed animals. Incorporation by tissue from normal animal fed ‘ad libitum’ was more compared to the tissue from pair-fed one.

  3. 3.

    Hepatic oxidation of acetate-1-14C to14CO2 by slices was depressed in scurvy.

  4. 4.

    Mitochondria prepared from scorbutic liver tissue exhibited a lower oxidation of octanoate-1-14C to14CO2. Addition of essential cofactors like ATP and Mg++ in the system did not improve the depressed oxidation.

  5. 5.

    Thein vitro oxidation of terminally labeled higher fatty acids like lauric, myristic and stearic to 14CO2 by the mitochondrial tissue preparation from scorbutic guinea pigs was appreciably depressed as a result of this disease. ATP and Mg++ could fortify considerably this defect.

  6. 6.

    The significance of these findings in relation to lipid metabolism in scurvy is discussed.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quastel, J. H. andA. H. M. Wheatley, Biochem. J.28, 1014 (1934).CrossRefGoogle Scholar
  2. 2.
    Abramson, H., J. Biol. Chem.178, 179 (1949).Google Scholar
  3. 3.
    Donnan, S. K., J. Biol. Chem.182, 415 (1950).Google Scholar
  4. 4.
    Ottonlenghi, A., F. Bernheim, andK. M. Wilbur, Arch. Biochem. Biophys.56, 157 (1955).CrossRefGoogle Scholar
  5. 5.
    Debous, A. F., J. W. Wallace, andH. Bacchus, Am. J. Physiol,185, 31 (1956).Google Scholar
  6. 6.
    Becker, A. R., H. B. Burch, L. L. Salomon, T. T. Venkitasubra-manium, andC. G. King, J. Am. Chem. Coc.75, 2020 (1953).CrossRefGoogle Scholar
  7. 7.
    Banerjee, S. andH. D. Singh, J. Biol. Chem.233, 336 (1958).Google Scholar
  8. 8.
    Guchhait, R. andN. C. Ganguli, Bull. Natl. Inst. Sciences (India), No.18, 49 (1961).Google Scholar
  9. 9.
    Guchhait, R., B. C. Guha, andN. C. Ganguli, Biochem. J.86, 193 (1963).CrossRefGoogle Scholar
  10. 10.
    Guchhait, R., Dissertation, Calcutta University (1961).Google Scholar
  11. 11.
    Sheppard, M. andE. W. Mchenry, Biochem. J.33, 655 (1939).CrossRefGoogle Scholar
  12. 12.
    Sigal, A. andC. G. King, J. Biol. Chem.116, 489 (1936).Google Scholar
  13. 13.
    Banerjee, S., D. K. Biswas, andH. D. Singh, J. Biol. Chem.230, 261 (1958).Google Scholar
  14. 14.
    Ganguli, N. C. andB. A. Banerjee, J. Biol. Chem.236, 979 (1961).Google Scholar
  15. 15.
    Banerjee, A. B. andN. C. Ganguli, J. Biol. Chem.,237, 14 (1962).Google Scholar
  16. 16.
    Banerjee, S., J. Biol. Chem.159, 327 (1945).Google Scholar
  17. 17.
    Hogeboom, G. H., inS. P. Colowick andN. O. Kaplan (Editors), Methods in enzymology, Vol. I, Academic Press, Inc., New York, 1955, p. 16.CrossRefGoogle Scholar
  18. 18.
    Guchhait, R. andN. C. Ganguli, J. Sci. Ind. Res.200, 195 (1961).Google Scholar
  19. 19.
    Guchhait, R. andN. C. Ganguli Biochim. Biophys. Acta,51, 607 (1961).CrossRefGoogle Scholar
  20. 20.
    Katz, J. andI. L. Chaikoff, J. Biol. Chem.206, 887 (1954).Google Scholar
  21. 21.
    Ma, T. S. andG. Zuazaga, Ind. Eng. Chem. (Anal. Ed.),14, 280 (1942).CrossRefGoogle Scholar
  22. 22.
    Lehninger, A. L., inS. P. Colowick andN. O. Kaplan (Editors), Methods in enzymology, Vol. I, Academic Press, Inc., New York, 1955, p. 545.CrossRefGoogle Scholar
  23. 23.
    Emerson, R. J. andJ. T. Van Bruggen, Arch. Biochem. Biophys.77, 467 (1958).CrossRefGoogle Scholar
  24. 24.
    Lyon, I., M. S. Masri, andI. L. Chaikoff, J. Biol. Chem.196, 25 (1952).Google Scholar
  25. 25.
    Hutchens, T. T., J. T. Van Bruggen, R. M. Cockburn, andE. S. West, J. Biol. Chem.208, 115 (1954).Google Scholar
  26. 26.
    Ganguli, N. C. andS. C. Roy, Ann. Biochem. and Exptl. Med.14, 35 (1954).Google Scholar
  27. 27.
    Takeda, Y. andM. Hara, J. Biol. Chem.214, 657 (1955).Google Scholar
  28. 28.
    Banerjee, S., D. K. Biswas, andH. D. Singh, J. Biol. Chem.235, 902 (1960).Google Scholar
  29. 29.
    Brady, R. O. andGurin, S., J. Biol. Chem.186, 461 (1950).Google Scholar
  30. 30.
    Brady, R. O., F. D. W. Lukens, andS. Gurin, J. Biol. Chem.193, 45 (1951).Google Scholar
  31. 31.
    Banerjee, S., Nature (London),153, 344 (1944).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1964

Authors and Affiliations

  • R. Guchhait
    • 1
  • B. C. Guha
    • 1
  • N. C. Ganguli
    • 1
  1. 1.Department of Applied ChemistryUniversity College of ScienceCalcutta 9India

Personalised recommendations