, Volume 18, Issue 1–2, pp 21–41 | Cite as

The application of evolution models in scientometrics

  • E. Bruckner
  • W. Ebeling
  • A. Scharnhorst


According to the connection between field mobility and coupled manpower growth processes in a system of scientific fields a deterministic, stochastic and continuous version of an evolution model is presented. Some simulation results on base of the stochastic model are given in Section 5 and compared with corresponding trend analyses of the deterministic model. Several interesting effects, as delayed growth and temporal disappearance as well as rapid growth and overshooting of a new field, are shown by the simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. 1.
    Comp.: Y. ELKANA, J. LEDERBERG, R. K. MERTON, A. THACKRAY, H. ZUCKERMAN (Eds),Toward a Metric of Science, Wiley, New York, 1978, T. BRAUN, W. GLÄNZEL, A. SCHUBERT,Scientometric Indicators. A 32-Country Comparative Evaluation of Publishing Performance and Citation Impact, World Scientific Publ. Co., Singapore, Philadelphia, 1985.Google Scholar
  2. 2.
    See e.g.: J. D. STERMAN, The Growth of Knowledge: Testing a Theory of Scientific Revolutions with a Formal Model,Technological Forecasting and Social Change, 28 (1985), 93–122.Google Scholar
  3. 3.
    For the concept of field mobility comp.: J. VLACHÝ, Mobility in Physics — A Bibliography of Occupational, Geographic and Field Mobility of Physicists,Czechoslovak Journal of Physics B31 (1981) 6, 669–674, J. VAN HOUTEN, H. G. VAN VUREN, C. LE PAIR, G. DIJKHUIS, Migration of Physicists to other Academic Disciplines: Situation in the Netherlands,Scientometrics, 5 (1983) 257–267, L. L. HARGENS, Migration Patterns of U.S. PH.D.S. Among Disciplines and Specialties,Scientometrics, 9 (1986) 145–164. As an example of application of Markov Chains Theory to this problem comp. e.g.: M. L. PAO, L. McCREERY, Markov Chains Theory in the Detection of Research Activities in Physics,Czechoslovak Journal of Physics, B36 (1986) 1, 111–114.Google Scholar
  4. 4.
    For a model similar to the Lotka-Volterra-approach see e.g.: G. R. IVANITSKII,Pulsiruyushchii Process Razvitiya Nauki (in Russian),Priroda, (1982) 1, 14–21.Google Scholar
  5. 5.
    T. J. RAINOFF, Wave-like Fluctuations of Creative Productivity in the Development of West-European Physics in the 18th and 19th Centuries,ISIS, 12 (1929) 38, 287–297.Google Scholar
  6. 6.
    For an overview see e.g.: H. SMALL, E. SWEENEY, E. GREENLEE, Clustering the Science Citation Index Using Co-Citations. II. Mapping Science,Scientometrics, 8 (1985) 321–340.CrossRefGoogle Scholar
  7. 7.
    Comp. e.g.: J. B. KRUSKAL, Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis,Psychometrika, 29 (1964) 1–27, J. B. KRUSKAL, Nonmetric Multidimensional Scaling: A Numerical Method,Psychometrika, 29 (1964) 115–129. See also E. NOMA, The Simultaneous Scaling of Cited and Citing Articles in a Common Space,Scientometrics, 4 (1982) 205–231.Google Scholar
  8. 8.
    Comp. e.g.: M. CALLON, J.-P. COURTIAL, W. A. TURNER, S. BAUIN, From Translations to Problematic Networks — An Introduction to Co-Word Analysis,Social Science Information, 22 (1983) 2, 191–235, and see also note 9.Google Scholar
  9. 9.
    A. RIP, J.-P. COURTIAL, Co-Word Maps of Biotechnology: An Example of Cognitive Scientometrics,Scientometrics, 6 (1984) 381–400.Google Scholar
  10. 10.
    For an analogy to diffusion processes in physics comp. e.g.: A. AVRAMESCU, Modelling Scientific Information Transfer, International Forum on Information and Documentation, 1 (1975) 1, 13–19.Google Scholar
  11. 11.
    Comp.: W. GOFFMAN, Mathematical Approach to the Spread of Scientific Ideas — The History of Mast cell Research,Nature, CCXII (1966) 5061, 449–452, M. NOWAKOWSKA,Theories of Research, Vol. I–II, Intersystems Publications, Seaside, California, 1984, M. KOCHEN, Mathematical Model for the Growth of two Specialties,Science of Science, 3 (1983) 3/11, 199–217, F. MÜLLER, Wissenschaftlicher Fortschritt — mathematisch modelliert (in German),Wissenschaft und Fortschritt, 22 (1972) 4, 162–165.Google Scholar
  12. 12.
    W. EBELING, On Stochastic Models for Human Conduct in the Evolution of Science and Technology, in: I. PRIGOGINE, M. SANGLIER (Eds),Laws of Nature and Human Conduct, Discoveries 1985 Symposium, hosted by “the International Institutes for Physics and Chemistry founded by E. Solvay” and supported by “the Honda Foundation”, Brussels, 7–9 October, 1985, Brussels, 1987, p. 77–79, W. EBELING, A. SCHARNHORST, Selforganization Models of Field Mobility of Physicists,Czechoslovak Journal of Physics, B36 (1986) 1, 43–46.Google Scholar
  13. 13.
    W. EBELING, Die Stellung der Physik im System der Wissenschaften. Kritik des Physikalismus (in German),Deutsche Zeitschrift für Philosophie, 32 (1984) 1, 33–40.Google Scholar
  14. 14.
    See e.g.: A. I. YABLONSKY,Matematitscheskie Modeli v Issledovanii Nauk (in Russian), Nauka, Moscow, 1986, Comp. also the growing literature on human systems e.g.: W. WEIDLICH, G. HAAG (Eds),Concepts and Models of a Quantitative Sociology, Springer-Verlag, Berlin (West) Heidelberg, New York, 1983, P. M. ALLEN, G. ENGELEN, M. SANGLIER, Self-Organising Dynamic Models of Human Systems, in: E. FREHLAND (Ed.),Synergetics — From Microscopic to macroscopic Order, Springer-Verlag, Berlin (West), Heidelberg, New York, 1984, H. ULRICH, G. J. B. PROBST (Eds),Self—Organization and Management of Social Systems, Springer-Verlag, Berlin (West), Heidelberg, New York, 1984.Google Scholar
  15. 15.
    M. EIGEN, P. SCHUSTER,The Hypercycle, Springer-Verlag, Berlin (West), Heidelberg, New York, 1979.Google Scholar
  16. 16.
    W. EBELING, R. FEISTEL, Models of Darwin Processes and Evolutionary Principles,Bio-Systems, 15 (1982) 291–299.Google Scholar
  17. 17.
    W. EBELING, I. SONNTAG, A Stochastic Description of Evolutionary Processes In Underoccupied Systems,BioSystems, 19 (1986) 91–100.Google Scholar
  18. 18.
    M. A. JIMÉNEZ-MONTAÑO, W. EBELING, A Stochastic Evolutionary Model of Technological Change,Collective Phenomena, 3 (1980) 107–114.Google Scholar
  19. 19.
    A. J. LOTKA, Ein Fall von Autokatakinese mit oszillatorischem Verlauf (in German),Zeitschrift für physikalische Chemie, 80 (1912) 159–164.Google Scholar
  20. 20.
    E. BRUCKNER, A. SCHARNHORST, Bemerkungen zum Problemkreis einer wissenschafts wissenschaftlichen Interpretation der Fisher-Eigen-Gleichung, dargestellt an Hand wissenschafthistorischer Zeugnisse (in German),Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Reihe, 35 (1986) 5, 481–493.Google Scholar
  21. 21.
    Comp.: G. N. GILBERT, Measuring the Growth of Science, A Review of Indicators of Scientific Growth,Scientometrics, 1 (1978) 1, 3–9.Google Scholar
  22. 22.
    For a similar thematic approach of quasi-competition of topics by modelling topic mobility of scientists see e.g.: M. NOWAKOWSKA, Quasi-Competition of Topics within a Discipline,Science of Science, 1 (1980) 1, 107–116.Google Scholar
  23. 23.
    Comp. e.g.: C. LE PAIR, Switching between Academic Disciplines in Universities in the Netherlands,Scientometrics, 2 (1980) 177, J. VAN HOUTEN, H. G. VAN VUREN, C. LE PAIR, G. DIJKHUS, op. cite, note 3.Google Scholar
  24. 24.
    Comp.: R. WHITLEY, Types of Science, Organizational Strategies, and Patterns of Work in Research Laboratories in Different Scientific Fields,Social Science Information. Vol. 17 (1978) 3, 427–447; K. D. KNORR-CETINA, Scientific Communities or Transepistemic Arenas of Research? A critique of Quasi-Economic Models of Science,Social Studies of Science, 12 (1982) 101–130; M. CALLON, Struggles and Negotiations to Define What is Problematic and What is Not. The Socio-Logics of Translation, in: K. D. KNORR-CETINA, R. KROHN, R. WHITLEY, (Eds),The Social Process of Scientific Investigation [Sociology of Science Yearbook 4], D. Reidel, Dordrecht, 1981, A. RIP, A Cognitive Approach to Science Policy,Research Policy, 10 (1981) 294–311, P. WEINGART, The Scientific Power Elite — A Chimera. The De Institutionalization and Politization of Science, in: N. ELIAS (Eds.),Scientific Establishments and Hierarchies [Sociology of the Sciences Yearbook 6], D. Reidel, Dortrecht, 1982, W. SHRUM, Scientific Specialties and Technical Systems,Social Studies of Science, 14 (1984) 63–90.Google Scholar
  25. 25.
    Comp. e.g.: D. EDGE, Quantitative Measures of Communication in Science: A Critical Review,History of Science, 17 (1979) 102–134, M. CALLON, J.-P. COURTIAL, W. A. TURNER, S. BAUIN, note 8, A. RIP. J.-P. COURTIAL, note 9.Google Scholar
  26. 26.
    R. FEISTEL, W. EBELING, Stochastic Models of Evolutionary Processes, in: K. LAMPRECHT, A. I. ZOTIN,Thermodynamics and Regulation of Biological Processes, Walter de Gruyter, Berlin (West), New York, 1985, p. 437–450.Google Scholar
  27. 27.
    Note 6, p. 321. To the problem of interdisciplinarity comp.: J. VLACHY, Interdisciplinarity and Field Mobility in Physics Education — An International Bibliography of Studies and Data Sources, Submitted toInt. Conf. Post-Grad. Educ. Phys., Praha, 1980. See also: G. KRÖBER, Interdisziplinarität — ein aktuelles Erfordernis der Gesellschafts - und Wissenschaftsenwicklung (in German),Deutsche Zeitschrift für Philosophie, 31 (1983) 5, 575–589. H. PARTHEY, Interdisziplinarität und interdisziplinäre Forschungsgruppen (in German),Deutsche Zeitschrist für Philosophie, 31 (1983) 1, 31–43.Google Scholar
  28. 28.
    Comp. e.g.: H.-J. CZERWON, J. VLACHY, Quantized Hall Effect — Publication and Citation Follow — ups of a Nobel Prize Discovery,Czechoslovak Journal of Physics, B36 (1986) 9, 1101–1106.Google Scholar
  29. 29.
    See e.g.: M. BURGER, E. BUJDOSO, Oscillating Chemical Reactions as an Example of the Development of a Subfield of Science, in: R. J. FIELD, M. BURGER (Eds),Oscillations and Travelling Waves in Chemical Systems, Wiley and Sons, New York, 1984, p. 565–604, E. BUJDOSO, W. S. LYON, I. NOSZLOPI, Prompt Nuclear Analysis: Growth and Trends,Journal of Radioanalytical Chemistry, 74 (1982) 1, 197–238.Google Scholar
  30. 30.
    W. EBELING, A. ENGEL, B. ESSER, R. FEISTEL, Diffusion and Reaction in Random Media and Models of Evolution Processes,Journal of Statistical Physics, 37 (1984) 369–389.Google Scholar
  31. 31.
    Physics in Perspective, National Academy of Sciences, Washington, 1973.Google Scholar
  32. 32.
    As a survey of characteristic mathematical growth functions see e.g.: M. PESCHEL, W. MENDE,The Predator-Prey Model. Do We Live in a Volterra World?, Akademie-Verlag, Berlin, 1976, pp. 28.Google Scholar
  33. 33.
    See e.g.:Science Indicators 1982, Washington: National Science Board/National Science Foundation, 1983,Science Indicators 1985, Washington: National Science Board/National Science Foundation, 1985.Google Scholar
  34. 34.
    D. de Solla PRICE, Studies in Scientometrics: Part 1. Transience and Continuance in Scientific Authorship,International Forum on Information and Documentation, Moscow, FID 1, 2, 1976, M. KOCHEN, op. cit., note 11. Mathematical Model for the Growth of two Specialties,Science of Science, 3 (1983) 3/11, 199–217.Google Scholar
  35. 35.
    Comp. e.g.: D. de Solla PRICE,Science since Babylon, Yale University Press, New Haven, 1961, pp. 85, H. B. FELL, Fashion in Cell Biology,Science, 132 (1960) 1625–1627, W. O. HAGSTROM, Segmentierung als eine Form strukturellen Wandels in der Wissenschaft, in: P. WEINGART,Wissenschaftssoziologie I, Äthenäum Fischer Taschenbuch Verlag, Frankfurt am Main, 1974. For a mathematical model including fashion in science comp. e.g.: M. NOWAKOWSKA, note 22.Google Scholar
  36. 36.
    G. SIMMEL, Fashion,The American Journal of Sociology, LXII (1957) 6, p. 543.Google Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • E. Bruckner
    • 1
  • W. Ebeling
    • 2
  • A. Scharnhorst
    • 1
  1. 1.Institute for Theory, History and Organisation of ScienceAcademy of Sciences of the GDRBerlin(GDR)
  2. 2.Department of PhysicsHumboldt UniversityBerlin(GDR)

Personalised recommendations