Periodica Mathematica Hungarica

, Volume 6, Issue 2, pp 111–136 | Cite as

Convex set functions ind-space

  • C. Borell


Convex Body Concave Function Affine Subspace Positive Radon Measure Open Convex Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities,Proc. Amer. Math. Soc. 6 (1955), 170–176.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Borell, Inverse inequalities for concave or generalized concave functions, Uppsala Univ. Dept. of Math., Report No. 44 (1972).Google Scholar
  3. [3]
    C. Borell, Complements of Lyapunov's inequality,Math. Ann. 205 (1973), 323–331.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Das Gupta, M. L. Eaton, I. Olkin, M. Perlman, L. J. Savage andM. Sobel, Inequalities on the probability content of convex regions for elliptically contoured distributions,Proc. Sixth Berkeley Sympos. Math. Statist. Probability, Vol. II, Berkeley, 1972, 241–265.zbMATHGoogle Scholar
  5. [5]
    A. Dinghas, Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem typus,Math. Z. 68 (1957/58), 111–125.MathSciNetCrossRefGoogle Scholar
  6. [6]
    H. Hadwiger andD. Ohman, Brunn-Minkowskischer Satz und Isoperimetrie,Math. Z. 66 (1956/57), 1–8.MathSciNetCrossRefGoogle Scholar
  7. [7]
    N. L. Johnson andS. Kotz,Distributions in Statistics: Continuous Multivariate Distributions, Wiley, New York, 1972.zbMATHGoogle Scholar
  8. [8]
    L. Leindler, On a certain converse of Hölder's inequality II,Acta Sci. Math. (Szeged) 33 (1972), 215–223.zbMATHGoogle Scholar
  9. [9]
    P. Montel, Sur les fonctions convexes et les fonctions sousharmoniques,J. Math. Pures Appl. 7 (1928), 29–60.zbMATHGoogle Scholar
  10. [10]
    A. Prékopa, Logarithmic concave measures with application to stochastic programming,Acta Sci. Math. (Szeged) 32 (1971), 301–316.MathSciNetzbMATHGoogle Scholar
  11. [11]
    C. A. Rogers andG. C. Shephard, The difference body of a convex body,Arch. Math. (Basel) 8 (1957), 220–233.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. A. Rosenbaum, Sub-additive functions,Duke Math. J. 17 (1950), 225–247.MathSciNetCrossRefGoogle Scholar
  13. [13]
    W. Rudin,Real and Complex Analysis, McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  14. [14]
    I. J. Schoenberg, On Pólya frequency functions I. The totally positive functions and their Laplace transforms,J. Analyse Math. 1 (1951), 331–374.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Sherman, A theorem on convex sets with applications,Ann. Math. Statist. 26 (1955), 763–767.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel,Fund. Math. 1 (1920), 105–111.zbMATHGoogle Scholar
  17. [17]
    S. Vajda,Probabilistic programming, Academic Press, New York, 1972.Google Scholar

Copyright information

© Akadémiai Kiadó 1975

Authors and Affiliations

  • C. Borell
    • 1
  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations